我们为你精选了一份Jupyter/IPython笔记本集合 !(附大量资源链接)-下篇

2019 年 4 月 23 日 THU数据派

作者:Hans Fangohr

翻译:顾宇华

本文约12000字,建议阅读45+分钟。

本文介绍了一些有趣的Jupyter/IPython笔记本。

5. 关于用笔记本本身做各种事情的其他主题


在Blogger中使用IPython发博客,也可以在博客文章中找到,完整的报告在这里。作者:Fernando Perez。


在Blogger中使用IPython发博客

https://nbviewer.jupyter.org/github/fperez/blog/blob/master/120907-Blogging%20with%20the%20IPython%20Notebook.ipynb


博客文章

http://blog.fperez.org/2012/09/blogging-with-ipython-notebook.html


完整的报告

https://github.com/fperez/blog


在Octopress中使用IPython发博客,由Jake van der Plas 撰写,并作为博客文章提供。Jake的其他笔记本包含了许多使用科学Python堆栈进行有趣工作的好例子。


在Octopress中使用IPython发博客

https://nbviewer.jupyter.org/github/jakevdp/jakevdp.github.com/blob/master/downloads/notebooks/nb_in_octopress.ipynb


Jake的其他笔记本

https://github.com/jakevdp/jakevdp.github.com/tree/master/downloads/notebooks


在Nikola中使用IPython进行发博客,也可以在DamiánAvila的博客文章中找到。


笔记本的自定义CSS控件,这是Matthias Bussonnier 的博客报告的一部分。


笔记本的自定义CSS控件

https://nbviewer.jupyter.org/github/Carreau/posts/blob/master/Blog1.ipynb


IPython显示连接:帮助显示各种来源的视觉输出的工具,@ deeplook的要点。


IPython显示连接:帮助显示各种来源的视觉输出的工具

https://nbviewer.jupyter.org/gist/deeplook/5162445


由Min RK 提供的导入IPython笔记本作为模块。


导入IPython笔记本作为模块

https://nbviewer.jupyter.org/gist/minrk/6011986


6. 可复现的学术出版物


本节包含已在同行评审文献或预印本网站(如ArXiv)上发表的学术论文,其中包括一个或多个笔记本,这些笔记本能够(即使只是部分)使读者可以复制出版物的结果。如果您在此处包含出版物,请链接到期刊文章以及提供nbviewer笔记本链接(以及与该论文相关的任何其他相关资源)。


1. 通过LIGO合作发现引力波。该页面来自LIGO开放科学中心,包含多个笔记本,用于处理与不同事件相对应的各种数据集; 这个合集让你可以立即运行代码。关于GW150914事件的更多细节以及原始的主要物理评论快报文章“观察二进制黑洞合并中的引力波”。


通过LIGO合作发现引力波

https://www.gw-openscience.org/tutorials/


观察二进制黑洞合并中的引力波

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.061102


2. 使用基于Multi-Omics的工作流程表征工程大肠杆菌中的菌株变异,作者:Brunk等。


使用基于Multi-Omics的工作流程表征工程大肠杆菌中的菌株变异

https://www.cell.com/cell-systems/fulltext/S2405-4712(16)30112-0


3. 使用机器学习方法预测日冕物质抛射(天体物理学杂志,2016)由Monica Bobr和Stathis Ilonidis撰写。重现所有结果的IPython笔记本已永久存放在斯坦福数字存储库中。


使用机器学习方法预测日冕物质抛射

https://iopscience.iop.org/article/10.3847/0004-637X/821/2/127/meta


4. Alyssa Goodman等人的未来论文。(Authorea Preprint,2017)。本文通过演示解释和展示了学术上的“论文”如何能够变成持久丰富的科学话语记录,丰富了深层数据和代码链接,交互式数字,音频,视频和评论。它包括一个交互式的d3.js可视化,并有一个天文数据图,其中有一个IPYthon笔记本。


未来论文

https://www.authorea.com/users/23/articles/8762-the-paper-of-the-future?commit=d4033594de841d252b3220927b39de4314d26409


5. 回复“的季风降雨和温度的宇宙射线变化的影响”:假阳性的太阳地球研究领域由Benjamin Laken提供,2015年发表的文章将出现在JASTP。该IPython的笔记本再现了全面分析和与文章中完全相同的数据,可在Github 找到:figshare。


回复“的季风降雨和温度的宇宙射线变化的影响”:假阳性的太阳地球研究领域

https://arxiv.org/abs/1502.00505


6. 一个开放的RNA-Seq的数据分析管道教程,从最近的寨卡病毒的研究再处理数据的例子,由Zichen Wang and Avi Ma'ayan撰写。(F1000Research 2016,5:1574)。使用IPython笔记本在寨卡病毒感染后使用人细胞的公共基因表达数据来执行所提出的RNA-Seq管道。计算管道也是版本控制的,Docker化在这里可用。


一个开放的RNA-Seq的数据分析管道教程,从最近的寨卡病毒的研究再处理数据的例子

https://f1000research.com/articles/5-1574/v1


这里

https://github.com/MaayanLab/Zika-RNAseq-Pipeline


7. 改善Fisher的几何模型的概率:概率方法,由Yoav Ram and Lilach Hadany提供。(理论人口生物学,2014年)。允许图形再现的IPython笔记本被发表做为补充文件。


改善Fisher的几何模型的概率:概率方法

https://www.sciencedirect.com/science/article/pii/S0040580914000811?via%3Dihub


补充文件

https://www.royalsocietypublishing.org/rspb/19/rspb.2014.1025.DC1


8. 应力诱导的诱变和复杂的适应,作者:Yoav Ram和Lilach Hadany(Proceedings B,2014)。允许数字再现的IPython笔记本被存放为补充文件。


应力诱导的诱变和复杂的适应

https://royalsocietypublishing.org/doi/full/10.1098/rspb.2014.1025


9. J. Soelter等人撰写的使用正则化的非负矩阵分解法自动分割小鼠嗅球中的气味图。(Neuroimage 2014,Open Access)。该笔记本允许从论文中再现大多数数字,并提供更深入的数据视图。完整的代码库也已经推出。


使用正则化的非负矩阵分解法自动分割小鼠嗅球中的气味图

https://www.sciencedirect.com/science/article/pii/S1053811914003103


完整的代码库

https://github.com/jansoe/FUImaging/tree/Neuroimage2014


10. 头颈癌的多层基因组分析将TP53突变与3p损失联系起来,由A.Gross等人提出(Nature Genetics 2014)。该笔记本的全部合集以复制结果。


头颈癌的多层基因组分析将TP53突变与3p损失联系起来,由A.Gross等人提出(Nature Genetics 2014)

https://www.nature.com/articles/ng.3051


该笔记本的全部合集以复制结果

https://mp.weixin.qq.com/cgi-bin/appmsg?t=media/appmsg_edit&action=edit&type=10&appmsgid=100011380&isMul=1&token=231318955&lang=zh_CN#guide-to-running


11. Vázquez-Baeza等人将狗和人类炎症性肠病取决于重叠而明显的生态失调网络(自然微生物学2016)。该笔记本电脑的全部合集以重现结果。


Vázquez-Baeza等人将狗和人类炎症性肠病取决于重叠而明显的生态失调网络(自然微生物学2016)

https://www.nature.com/articles/nmicrobiol2016177


该笔记本电脑的全部合集以重现结果

https://github.com/ElDeveloper/dogs


12. powerlaw:用于分析重尾分布的Python包,由J. Alstott等人提出。手稿,ArXiv链接和项目存储库中的示例笔记本。


powerlaw:用于分析重尾分布的Python

https://code.google.com/archive/p/powerlaw/


项目存储库

https://github.com/jeffalstott/powerlaw


13. 支持云的允许提供快速,可重复的生物学见解的协作工具由B. Ragan-Kelley等人撰写。在主要的笔记本中,将相关的笔记本的完整合集并附有亚马逊AMI的信息以重现全文。


14. 一种用于计算归一化霰弹枪测序数据的无参考算法,由CT Brown等人提出。完整的笔记本,ArXiv链接和项目存储库。


完整的笔记本

https://nbviewer.jupyter.org/github/ged-lab/2012-paper-diginorm/blob/master/notebook/diginorm.ipynb


ArXiv链接

https://arxiv.org/abs/1203.4802


项目存储库

https://github.com/dib-lab/2012-paper-diginorm


15. 本地组的在宇宙环境运动学由J.E. Forero-Romero 等人撰写。全部笔记本以及所有数据可在GitHub库中找到。


本地组的在宇宙环境运动学

https://arxiv.org/abs/1303.2690


16. 海洋变暖威胁海洋生物,科学美国人的一篇文章,以笔记本为主要情节。由来自MarinExplore的Roberto de Almeida撰写。


海洋变暖威胁海洋生物

https://www.scientificamerican.com/article/warming-ocean-threatens-sea-life/


17. 由Wu,García,Hauert和Traulsen 撰写的推断进化游戏中的弱选择。PLOS Comp Bio论文和Fighare链接。


推断进化游戏中的弱选择

https://nbviewer.jupyter.org/github/juliangarcia/ews/blob/master/notebook.ipynb


PLOS Comp Bio论文

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003381


Fighare链接

https://figshare.com/articles/Extrapolating_weak_selection_in_evolutionary_games_source_code/814470


18.使用神经网络估计红移分布。一个CFHTLenS的应用程序,由Christopher Bonnett 撰写(提交给MNRAS)。


使用神经网络估计红移分布

https://nbviewer.jupyter.org/urls/bitbucket.org/christopher_bonnett/nn_notebook/raw/5e69b55193a229cb2076a2f18e43b45c56e317e0/T-800.ipynb


19. 由Jean-Luc R. Stevens,Judith S. Law,Jan Antolik和James A. Bednar撰写的 在初级视觉皮层中定位图的稳定,稳健和自适应开发机制。Journal of Neuroscience,33:15747-15766,2013。[Notebook1](https://ioam.github.io/topographica/_static/gcal_notebook.html),Notebook2。


在初级视觉皮层中定位图的稳定,稳健和自适应开发机制

http://www.jneurosci.org/content/33/40/15747


Notebook2

https://ioam.github.io/topographica/_static/stevens_jn13_notebook.html


20.加速随机基准,Christopher Granade, Christopher Ferrie and D. G. Cory撰写。新物理期刊17013042(2015),arXiv,GitHub repo。


加速随机基准

https://nbviewer.jupyter.org/github/cgranade/accelerated-randomized-benchmarking/blob/master/src/model_testing.ipynb


arXiv

https://arxiv.org/abs/1404.5275


GitHub repo

https://github.com/cgranade/accelerated-randomized-benchmarking


21. Tao Ding和Patrick D. Schloss撰写的人体微生物群落类型的动态和联系。笔记本复现的结果。


人体微生物群落类型的动态和联系

https://www.nature.com/articles/nature13178


笔记本复现的结果

https://nbviewer.jupyter.org/gist/pschloss/9815766/notebook.ipynb


22. Sylvester,Z.,Pirmez,C.,Cantelli,A。,Jobe,ZR 撰写的,海底通道弯曲度随纬度和坡度变化的变化。


海底通道弯曲度随纬度和坡度变化的变化

https://nbviewer.jupyter.org/gist/zsylvester/6040d0015b9b907bc788


23. 任务上下文的正顶表示支持M.L.的目标导向认知的灵活控制,由M.L. Waskom, D. Kumaran, A.M. Gordon, J. Rissman, & A.D. Wagner撰写。Github存储库 | 主笔记本


任务上下文的正顶表示支持M.L.的目标导向认知的灵活控制

http://www.jneurosci.org/content/34/32/10743.short


Github存储库

https://github.com/WagnerLabPapers/Waskom_JNeurosci_2014


主笔记本

https://nbviewer.jupyter.org/github/WagnerLabPapers/Waskom_JNeurosci_2014/blob/master/Behavioral_and_Decoding_Analyses.ipynb


24. pyparty:使用Python进行直观粒子处理,Adam Hughes 的笔记来生成已发布的数据 | 另外,查看pyparty教程笔记本。


pyparty:使用Python进行直观粒子处理

https://openresearchsoftware.metajnl.com/articles/10.5334/jors.bh/


生成已发布的数据

https://nbviewer.jupyter.org/github/hugadams/pyparty/blob/master/examples/Notebooks/JORS_data.ipynb?create=1


pyparty教程笔记本

https://github.com/hugadams/pyparty


25. 在进化的牡蛎中表明家族特异性DNA甲基化模式,Claire E. Olson,Steven B. Roberts doi:http://dx.doi.org/10.1101/012831。笔记本在论文中生成的结果。


在进化的牡蛎中表明家族特异性DNA甲基化模式

https://www.biorxiv.org/content/10.1101/012831v1


笔记本在论文中生成的结果

https://nbviewer.jupyter.org/github/che625/olson-ms-nb/blob/master/BiGo_dev.ipynb


26. 并行前缀多态性许可证并行化,演示和证明,Jiahao Chen and Alan Edelman, HPTCDL'14. 网站与笔记


网站

http://jiahao.github.io/parallel-prefix/


笔记

https://github.com/jiahao/ijulia-notebooks/blob/master/2014-08-06-parallel-prefix.ipynb


27. 转录组测序揭示了在SF3B1突变的癌症中进行隐蔽3'剪接位点选择的潜在机制,由Christopher DeBoever等人撰写。有几个笔记本可以复制结果并制作数字。


转录组测序揭示了在SF3B1突变的癌症中进行隐蔽3'剪接位点选择的潜在机制

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004105


28. 用于表征生物传感器的纳米颗粒单层的工作流程:真实和人工SEM图像的机器学习,由Adam Hughes,Zhaowen Liu,Maryam Raftari,Mark. EReeves撰写。笔记本在表1中链接在文本中。


用于表征生物传感器的纳米颗粒单层的工作流程:真实和人工SEM图像的机器学习

https://peerj.com/preprints/671/


29. AtomPy:天体物理应用的开放式原子数据管理环境,由C. Mendoza, J. Boswell, D. Ajoku, M. Bautista撰写。


AtomPy:天体物理应用的开放式原子数据管理环境

https://www.mdpi.com/2218-2004/2/2/123


30. 四维小行星可视化,选自科学美国人(作者:Jake VanderPlas)。


四维小行星可视化

https://blogs.scientificamerican.com/sa-visual/visualizing-4-dimensional-asteroids1/


31. 理解与宏基因组组装的微生物群落的挑战和机遇,附有IPython的笔记本教程,由Adina Howe and Patrick Chain撰写。


理解与宏基因组组装的微生物群落的挑战和机遇

https://www.frontiersin.org/articles/10.3389/fmicb.2015.00678/full


32. 剪切线极低的结构(2016)由Sergeev,DE,Renfrew,IA,Spengler,T.和Dorling,SR QJR Meteorol撰写。SOC。DOI:10.1002 / qj.2911。附笔记本生成已发布的数字。


剪切线极低的结构

https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.2911


附笔记本生成已发布的数字

https://github.com/dennissergeev/structure-of-a-shear-line-polar-low-notebooks


33. 检测非线性基因型 - 表型图中的高阶上位作用由Zachary R. Sailer和Michael J. Harms于2017年3月发表于Genetics。所有数据都可以通过这个Github报告中的笔记本复制。


检测非线性基因型 - 表型图中的高阶上位作用

http://www.genetics.org/content/205/3/1079


Github报告

https://github.com/harmslab/notebooks-nonlinear-high-order-epistasis


34. Stuart Geiger 对2017年GitHub开源调查的总结分析。2017年6月在SocArXiv预印本.doi:10.17605 / OSF.IO / ENRQ5。论文来自使用nbconvert转换为LaTeX的笔记本。笔记本和材料在:OSF,GitHub,nbviewer


Stuart Geiger 对2017年GitHub开源调查的总结分析

https://osf.io/preprints/socarxiv/qps53/


OSF

https://osf.io/enrq5/


GitHub

https://github.com/staeiou/github-survey-analysis


nbviewer

https://nbviewer.jupyter.org/github/staeiou/github-survey-analysis/blob/master/github-survey-descriptive-stats.ipynb


35. 怪异SDSS星系:结果来自异常值检测算法,由D. Baron and D. Poznanski撰写。以复现的笔记本。


怪异SDSS星系:结果来自异常值检测算法

https://arxiv.org/abs/1611.07526


以复现的笔记本

https://github.com/dalya/WeirdestGalaxies


36. Clustergrammer,一种用于高维生物数据的基于网络的热图可视化和分析工具,由Nicolas Fernandez等人提出。笔记本:图3,图4,图5


Clustergrammer,一种用于高维生物数据的基于网络的热图可视化和分析工具

https://www.nature.com/articles/sdata2017151


图3

https://nbviewer.jupyter.org/github/MaayanLab/CST_Lung_Cancer_Viz/blob/master/notebooks/CST_Data_Viz.ipynb


图4

https://nbviewer.jupyter.org/github/MaayanLab/Cytof_Plasma_PMA/blob/master/notebooks/Compare_Cell-Type_Distribution_PMA_Treatment.ipynb


图5

https://nbviewer.jupyter.org/github/MaayanLab/CCLE_Clustergrammer/blob/master/notebooks/Clustergrammer_CCLE_Notebook.ipynb


37. 社会学:两个英国出生队列中一般认知能力社会阶级不平等的调查。2017年12月在SocArXiv预印本.doi:10.17605 / OSF.IO / SZXDM。笔记本和材料在:OSF,GitHub,nbviewer。


社会学:两个英国出生队列中一般认知能力社会阶级不平等的调查。

https://osf.io/preprints/socarxiv/szxdm/


38. Fischer等人于2016年11月推出的用于自身非经典光的片上架构, Quant-ph ArXiV预印本。一个用于所有的计算支持的笔记本包含在提交的arXiv。


用于自身非经典光的片上架构

https://arxiv.org/abs/1611.01566


39. 用于目标搜索来自脉冲星的连续引力波的嵌套采样代码,gr-qc ArXiV preprint,2017年5月,由Pitkin等人提出。在GitHub上提供支持笔记本和源代码的完整报告。


用于目标搜索来自脉冲星的连续引力波的嵌套采样代码

https://arxiv.org/abs/1705.08978


40. HyperTools:用于可视化和操作高维数据的Python工具箱,由Heusser等人提供的stat.OT ArXiV预印本。可以使用伴随笔记本的repo,链接到库本身HyperTools。


HyperTools:用于可视化和操作高维数据的Python工具箱

https://arxiv.org/abs/1701.08290


41. 非正弦β振荡反映帕金森氏病的皮质病理生理学, Cole等人的Journal of Neuroscience。带有所有必要数据的笔记本的报告可用于重现所有数据。


非正弦β振荡反映帕金森氏病的皮质病理生理学

http://www.jneurosci.org/content/37/18/4830


42. Cole&Voytek在bioRxiv中对神经振荡进行逐周期分析。带有所有必要数据的笔记本的报告可用于重现所有数据。此repo还链接到相关的有用库,neurodsp,其中包含教程的笔记本。


Cole&Voytek在bioRxiv中对神经振荡进行逐周期分析

https://www.biorxiv.org/content/10.1101/302000v1


笔记本

https://github.com/voytekresearch/Cole_2018_cyclebycycle


7. 数据为主的新闻


数据新闻开放的必要,Brian Keegan。


数据新闻开放的必要

https://nbviewer.jupyter.org/github/brianckeegan/Bechdel/blob/master/Bechdel_test.ipynb


圣路易斯县的隔离分析,文章的分析弗格森地区比你可能猜到的更加分离,由Jeremy Singer-Vine撰写。


圣路易斯县的隔离分析

https://github.com/BuzzFeedNews/2014-08-st-louis-county-segregation


摘自魁北克省的论文,由Jean-Hugues Roy 撰写(法文)。


摘自魁北克省的论文

https://github.com/jhroy/theses/blob/master/theses.ipynb


8. 异想天开的笔记本


使用Matplotlib创建的XKCD样式图。这是博客文章的讨论版本。由Jake van der Plas提供。


使用Matplotlib创建的XKCD样式图

https://nbviewer.jupyter.org/url/jakevdp.github.com/downloads/notebooks/XKCD_plots.ipynb


梵高的星夜与ipythonblocks,Matt Davis的ipythonblocks的一部分。这是一个与IPython笔记本一起使用的教学工具,它提供了理解编程概念的可视元素。


梵高的星夜与ipythonblocks

https://nbviewer.jupyter.org/github/jiffyclub/ipythonblocks/blob/master/demos/starry_night_to_text.ipynb


康威的生命游戏。有趣的使用卷积运算来计算游戏板的下一个状态,而不是明显找到邻居并过滤下一个状态的板。


康威的生命游戏

https://nbviewer.jupyter.org/gist/jiffyclub/3778422


pynguins。使用jupyter notebook,python和numpy解决棋盘游戏“Penguins on Ice”。


pynguins

https://nbviewer.jupyter.org/gist/denfromufa/9a5e1fdeaf611dc60ea8


“人物情节”,用matplotlib生成的数字。


“人物情节”

https://nbviewer.jupyter.org/gist/theandygross/4544012


显示转换器迷你教程,也可以在博客文章中找到。你想直接从IPython笔记本制作静态html / css幻灯片吗?好的,现在你可以用揭示转换器(nbconvert)来做。由DamiánAvila 演示。


个人IPython体重笔记本。根据预后和动机特征描绘您的体重减轻。


个人IPython体重笔记本

https://nbviewer.jupyter.org/gist/anixdorf/9769238


IPython NB中的流双摆模拟。


IPython NB中的流双摆模拟

https://nbviewer.jupyter.org/github/plotly/python-user-guide/blob/master/s7_streaming/s7_streaming.ipynb


Porque Charles Xavier debe cambiar是一个关于脑的一项研究,由MarGiménez和Angela Rivera在Marvel漫画世界中进行数据和性别研究。


Porque Charles Xavier debe cambiar是一个关于脑的一项研究

https://nbviewer.jupyter.org/github/mshopper/aurora/blob/master/Aurora.ipynb


功能几何:解构MC Escher woodcut 平方限制,由Shashi Gowda设计的IJulia笔记本。


功能几何:解构MC Escher woodcut 平方限制

https://nbviewer.jupyter.org/github/shashi/ijulia-notebooks/blob/master/funcgeo/Functional%20Geometry.ipynb


使用Jupyter Noteboook解决物理难题。


使用Jupyter Noteboook解决物理难题

https://notebooks.azure.com/null/projects/null/html/Snake%20Puzzle%20Solver.ipynb


9. 广泛使用的IPython视频


当然,您可能尝试的第一件事是搜索关于IPython的视频(Youtube上的最后一次计数是1900左右)但是有其他应用程序的演示使用了IPython的强大功能,但在描述中未提及。以下所示:


关于如何学习Python的视频,将IPython作为学习的首选平台!


视频

https://www.youtube.com/watch?v=Nc16qeGBtMU


该视频显示了在scikit-learn项目中使用的IPython


该视频

https://www.youtube.com/watch?v=4ONBVNm3isI


他没有展示使用过的IPython,但在整个视频中他的IPython标签清晰可见:规划和抚育花园:幼儿期的未来Python教育


规划和抚育花园:幼儿期的未来Python教育

https://www.youtube.com/watch?v=op61s-QHryk


Wes McKinney关于Python和数据分析的演讲以及他的Python for Data Analysis一书中提到了IPython


Wes McKinney关于Python和数据分析的演讲

https://www.youtube.com/watch?v=qbYYamU42Sw&feature=youtu.be&t=5m9s


Python for Data Analysis

http://shop.oreilly.com/product/0636920023784.do


该视频显示了在蒙特利尔Python聚会上使用的Plotly和IPython。


该视频

https://www.youtube.com/watch?v=zG8FYPFU9n4


10. 通过笔记本访问和编程IBM量子计算机


Github笔记本示例(向下滚动)说明如何使用Qiskit并访问IBMQ量子计算机。


Github

https://github.com/Qiskit/qiskit-tutorials/blob/master/index.ipynb



编辑:王菁

校对:林亦霖


原文标题:

A gallery of interesting Jupyter Notebooks

原文链接:

https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks



译者简介

顾宇华,帝国理工与IE商学院毕业生,现为SxGroup咨询实习生。热情活泼,积极乐观,对数据科学充满热情。

翻译组招募信息

工作内容:需要一颗细致的心,将选取好的外文文章翻译成流畅的中文。如果你是数据科学/统计学/计算机类的留学生,或在海外从事相关工作,或对自己外语水平有信心的朋友欢迎加入翻译小组。

你能得到:定期的翻译培训提高志愿者的翻译水平,提高对于数据科学前沿的认知,海外的朋友可以和国内技术应用发展保持联系,THU数据派产学研的背景为志愿者带来好的发展机遇。

其他福利:来自于名企的数据科学工作者,北大清华以及海外等名校学生他们都将成为你在翻译小组的伙伴。


点击文末“阅读原文”加入数据派团队~

转载须知

如需转载,请在开篇显著位置注明作者和出处(转自:数据派ID:datapi),并在文章结尾放置数据派醒目二维码。有原创标识文章,请发送【文章名称-待授权公众号名称及ID】至联系邮箱,申请白名单授权并按要求编辑。

发布后请将链接反馈至联系邮箱(见下方)。未经许可的转载以及改编者,我们将依法追究其法律责任。


点击“阅读原文”拥抱组织

登录查看更多
0

相关内容

【2020新书】实战R语言4,323页pdf
专知会员服务
100+阅读 · 2020年7月1日
【实用书】学习用Python编写代码进行数据分析,103页pdf
专知会员服务
192+阅读 · 2020年6月29日
Python导论,476页pdf,现代Python计算
专知会员服务
259+阅读 · 2020年5月17日
【资源】100+本免费数据科学书
专知会员服务
107+阅读 · 2020年3月17日
机器学习速查手册,135页pdf
专知会员服务
338+阅读 · 2020年3月15日
【资源】机器学习资源大列表
专知
58+阅读 · 2019年10月16日
资源 | Python 中文书籍大集合
AI研习社
13+阅读 · 2018年12月20日
资源 | 一份非常全面的开源数据集
黑龙江大学自然语言处理实验室
10+阅读 · 2018年9月7日
学术汪必备的科研工具大集合!
清华大学研究生教育
9+阅读 · 2018年6月6日
最全数据科学学习资源:Python、线性代数、机器学习...
人工智能头条
11+阅读 · 2018年5月14日
15款免费预测分析软件!收藏好,别丢了!
七月在线实验室
10+阅读 · 2018年2月27日
值得收藏的45个Python优质资源(附链接)
数据派THU
4+阅读 · 2018年2月10日
Arxiv
14+阅读 · 2019年11月26日
Local Relation Networks for Image Recognition
Arxiv
4+阅读 · 2019年4月25日
Arxiv
8+阅读 · 2018年5月21日
Arxiv
4+阅读 · 2018年2月19日
Arxiv
12+阅读 · 2018年1月28日
VIP会员
相关VIP内容
【2020新书】实战R语言4,323页pdf
专知会员服务
100+阅读 · 2020年7月1日
【实用书】学习用Python编写代码进行数据分析,103页pdf
专知会员服务
192+阅读 · 2020年6月29日
Python导论,476页pdf,现代Python计算
专知会员服务
259+阅读 · 2020年5月17日
【资源】100+本免费数据科学书
专知会员服务
107+阅读 · 2020年3月17日
机器学习速查手册,135页pdf
专知会员服务
338+阅读 · 2020年3月15日
相关资讯
【资源】机器学习资源大列表
专知
58+阅读 · 2019年10月16日
资源 | Python 中文书籍大集合
AI研习社
13+阅读 · 2018年12月20日
资源 | 一份非常全面的开源数据集
黑龙江大学自然语言处理实验室
10+阅读 · 2018年9月7日
学术汪必备的科研工具大集合!
清华大学研究生教育
9+阅读 · 2018年6月6日
最全数据科学学习资源:Python、线性代数、机器学习...
人工智能头条
11+阅读 · 2018年5月14日
15款免费预测分析软件!收藏好,别丢了!
七月在线实验室
10+阅读 · 2018年2月27日
值得收藏的45个Python优质资源(附链接)
数据派THU
4+阅读 · 2018年2月10日
Top
微信扫码咨询专知VIP会员