2018年 第26篇
引言
推荐作为解决信息过载和挖掘用户潜在需求的技术手段,在美团点评这样业务丰富的生活服务电子商务平台,发挥着重要的作用。在美团App里,首页的“猜你喜欢”、运营区、酒店旅游推荐等重要的业务场景,都是推荐的用武之地。
图1 美团首页“猜你喜欢”场景
目前,深度学习模型凭借其强大的表达能力和灵活的网络结构在诸多领域取得了重大突破,美团平台拥有海量的用户与商家数据,以及丰富的产品使用场景,也为深度学习的应用提供了必要的条件。本文将主要介绍深度学习模型在美团平台推荐排序场景下的应用和探索。
深度学习模型的应用与探索
美团推荐场景中每天活跃着千万级别的用户,这些用户与产品交互产生了海量的真实行为数据,每天能够提供十亿级别的有效训练样本。为处理大规模的训练样本和提高训练效率,我们基于PS-Lite研发了分布式训练的DNN模型,并基于该框架进行了很多的优化尝试,在排序场景下取得了显著的效果提升。
如上图所示,模型排序流程包括日志收集、训练数据生成、模型训练和线上打分等阶段。当推荐系统对浏览推荐场景的用户进行推荐时,会记录当时的商品特征、用户状态与上下文信息,并收集本次推荐的用户行为反馈。在经过标签匹配和特征处理流程后生成最终的训练数据。我们在离线运用PS-Lite框架对Multi-task DNN模型进行分布式训练,通过离线评测指标选出效果较好的模型并加载到线上,用于线上排序服务。
转自:美团点评技术团队
完整内容请点击“阅读原文”