农学 | 会议/SCI期刊 约稿信息2条

2017 年 12 月 6 日 Call4Papers Call4Papers
农学

Flora

Special issue on Functional traits explaining plant responses to past and future climate changes

全文截稿: 2018-02-10
影响因子: 1.125
中科院JCR分区:
  • 大类 : 生物 - 4区
  • 小类 : 生态学 - 4区
  • 小类 : 植物科学 - 4区
网址: www.journals.elsevier.com/flora
Global warming put the debate on impact of climate change on biological systems among the hottest topics in science. Biologists predict that current climate change would cause more than a third of the Earth’s animal and plant species to be at risk of extinction by 2070. Such a trajectory would irreversibly harm biodiversity, disrupt ecosystems, and cause major damages to all biological systems. Awareness of non-anthropogenic climate changes which happened in previous geological eras could greatly improve our predictions about the ongoing trends through statistical modeling and managing to keep the ecosystems as intact as possible and reduce the harmful impacts of current climate change. Plant morphological traits provide useful tools in investigations on climate change, especially when addressing past climatic changes in geological eras through study of pollen, palynomorphs and phytoliths that indicate which plant groups were frequent in certain climates. On the other hand the ecotypic variation and plasticity of morphological and physiological traits determine which plants or plant groups might overcome the severe and quickly changing environments. The mechanisms and modifications behind these trait transformations are important issues to be focused in current and future scopes of biological sciences, including more realistic modelling of biogeochemical cycles and habitat distribution by using empirical trait–environment relationships.

Thus we expect contributions both on morphological and anatomical plant traits as evidence of past climate changes, and morphological and physiological traits (e.g. resource capture and utilization, leaf structure and longevity, wood anatomy and plant hydraulics, reproduction and phenology) along environmental gradients, between various provenances / ecotypes or under different experimental treatments as predictors for plant performance and survival in view of future climate changes.




农学

ISAPEP 2018

International Workshop on Intelligent Systems for Agriculture Production and Environment

全文截稿: 2018-03-01
开会时间: 2018-06-25
会议难度: ★
会议地点: Rome, Italy
网址:http://isapep.ucam.edu/index.html
Two of the most important worldwide challenges we need to face are to increase food production and protect the environment against factors such as climate change and environmental degradation. This requires the development of optimum environmental management strategies supported by the access to better information on environmental media condition (e.g., soils, waters, sediments, wastes). In order to fulfil this requirement, there is a need to increase the spatial density of environmental media data to ensure their right characterisation in a timely manner. This demand is enhanced by the fact that environmental media are highly heterogeneous and diverse temporally. Due to the high cost and time of traditional laboratory analysis, environmental sampling is often restricted. This increases the possibility of having undetected contamination and poor environmental media characterisation leading to environmental degradation and reducing the profitability of economic activities (e.g., agriculture). Intelligent systems represent alternative analysis tools by providing cost effective, rapid and real time measurement of environmental media, resulting in a new era for their characterisation and assessment. The development of this field offers an exciting opportunity for science advance and commercial application to capture the benefits of new technologies to assist the management of global environmental and economical problems. This development has applications in a wide range of areas (e.g., mining, contamination, agriculture, industrial processes) and requires the input of a number of disciplines (e.g., mathematics/statistics, telecommunications/informatics, environmental sciences). In this context, the use of intelligent systems will be paramount to understand, optimize and automate agricultural and environmental processes.

This workshop will therefore focus on the use of intelligent systems to overcome the issues related to the lack of productivity of farming systems and environmental degradation. This will involve the integration of solutions from different disciplines such as engineering, telecommunications, mathematics/statistics and agricultural, environmental,and computer science. The workshop will represent an opportunity to debate the state-of-the-art, cutting-edge challenges and the collaborations required.

ISAPEP’18 will be held as a co-locate event in the 14th International Conference on Intelligent Environments (IE'18). The core of the event will be the presentation of recent advances in research and applications followed by a debate aiming to encourage a critical reflection on the subject. We also encourage authors to include demos about tools and applications. Following the presentations of selected papers, a discussion panel will focus on critical issues that should be addressed at both academic and professional level. Interaction will be encouraged throughout the event.


登录查看更多
0

相关内容

ACL2020接受论文列表公布,571篇长文208篇短文
专知会员服务
66+阅读 · 2020年5月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
医学 | 顶级SCI期刊专刊/国际会议信息4条
Call4Papers
5+阅读 · 2018年12月28日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
4+阅读 · 2019年12月2日
Arxiv
6+阅读 · 2018年11月1日
Arxiv
3+阅读 · 2017年12月14日
Arxiv
5+阅读 · 2015年9月14日
VIP会员
相关VIP内容
相关资讯
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
医学 | 顶级SCI期刊专刊/国际会议信息4条
Call4Papers
5+阅读 · 2018年12月28日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
相关论文
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
4+阅读 · 2019年12月2日
Arxiv
6+阅读 · 2018年11月1日
Arxiv
3+阅读 · 2017年12月14日
Arxiv
5+阅读 · 2015年9月14日
Top
微信扫码咨询专知VIP会员