【深度学习】中科院计算所:潘汀——深度学习框架设计中的关键技术及发展趋

2017 年 11 月 12 日 产业智能官 图灵人工智能

潘汀,中科院计算所2017级博士生,导师山世光研究员。主要研究兴趣为目标检测技术与深度学习框架设计,目前独立开发与维护基于计算图的多重虚拟化深度学习框架Dragon


导读

框架已经成为快速推进深度学习研究的主要动力,尽管现有大量开源框架基本能满足使用需求,但系统性地理解这些工具仍然是费力的。 本教学将结合讲者独立开发深度学习框架的一些经验,介绍框架设计中的关键技术,并给出其发展趋势的简单分析。








人工智能赛博物理操作系统

AI-CPS OS

人工智能赛博物理操作系统新一代技术+商业操作系统“AI-CPS OS:云计算+大数据+物联网+区块链+人工智能)分支用来的今天,企业领导者必须了解如何将“技术”全面渗入整个公司、产品等“商业”场景中,利用AI-CPS OS形成数字化+智能化力量,实现行业的重新布局、企业的重新构建和自我的焕然新生。


AI-CPS OS的真正价值并不来自构成技术或功能,而是要以一种传递独特竞争优势的方式将自动化+信息化、智造+产品+服务数据+分析一体化,这种整合方式能够释放新的业务和运营模式。如果不能实现跨功能的更大规模融合,没有颠覆现状的意愿,这些将不可能实现。


领导者无法依靠某种单一战略方法来应对多维度的数字化变革。面对新一代技术+商业操作系统AI-CPS OS颠覆性的数字化+智能化力量,领导者必须在行业、企业与个人这三个层面都保持领先地位:

  1. 重新行业布局:你的世界观要怎样改变才算足够?你必须对行业典范进行怎样的反思?

  2. 重新构建企业:你的企业需要做出什么样的变化?你准备如何重新定义你的公司?

  3. 重新打造自己:你需要成为怎样的人?要重塑自己并在数字化+智能化时代保有领先地位,你必须如何去做?

AI-CPS OS是数字化智能化创新平台,设计思路是将大数据、物联网、区块链和人工智能等无缝整合在云端,可以帮助企业将创新成果融入自身业务体系,实现各个前沿技术在云端的优势协同。AI-CPS OS形成的字化+智能化力量与行业、企业及个人三个层面的交叉,形成了领导力模式,使数字化融入到领导者所在企业与领导方式的核心位置:

  1. 精细种力量能够使人在更加真实、细致的层面观察与感知现实世界和数字化世界正在发生的一切,进而理解和更加精细地进行产品个性化控制、微观业务场景事件和结果控制。

  2. 智能:模型随着时间(数据)的变化而变化,整个系统就具备了智能(自学习)的能力。

  3. 高效:企业需要建立实时或者准实时的数据采集传输、模型预测和响应决策能力,这样智能就从批量性、阶段性的行为变成一个可以实时触达的行为。

  4. 不确定性:数字化变更颠覆和改变了领导者曾经仰仗的思维方式、结构和实践经验,其结果就是形成了复合不确定性这种颠覆性力量。主要的不确定性蕴含于三个领域:技术、文化、制度。

  5. 边界模糊:数字世界与现实世界的不断融合成CPS不仅让人们所知行业的核心产品、经济学定理和可能性都产生了变化,还模糊了不同行业间的界限。这种效应正在向生态系统、企业、客户、产品快速蔓延。

AI-CPS OS形成的数字化+智能化力量通过三个方式激发经济增长:

  1. 创造虚拟劳动力,承担需要适应性和敏捷性的复杂任务,即“智能自动化”,以区别于传统的自动化解决方案;

  2. 对现有劳动力和实物资产进行有利的补充和提升,提高资本效率

  3. 人工智能的普及,将推动多行业的相关创新,开辟崭新的经济增长空间


给决策制定者和商业领袖的建议:

  1. 超越自动化,开启新创新模式:利用具有自主学习和自我控制能力的动态机器智能,为企业创造新商机;

  2. 迎接新一代信息技术,迎接人工智能:无缝整合人类智慧与机器智能,重新

    评估未来的知识和技能类型;

  3. 制定道德规范:切实为人工智能生态系统制定道德准则,并在智能机器的开

    发过程中确定更加明晰的标准和最佳实践;

  4. 重视再分配效应:对人工智能可能带来的冲击做好准备,制定战略帮助面临

    较高失业风险的人群;

  5. 开发数字化+智能化企业所需新能力:员工团队需要积极掌握判断、沟通及想象力和创造力等人类所特有的重要能力。对于中国企业来说,创造兼具包容性和多样性的文化也非常重要。


子曰:“君子和而不同,小人同而不和。”  《论语·子路》云计算、大数据、物联网、区块链和 人工智能,像君子一般融合,一起体现科技就是生产力。


如果说上一次哥伦布地理大发现,拓展的是人类的物理空间。那么这一次地理大发现,拓展的就是人们的数字空间。在数学空间,建立新的商业文明,从而发现新的创富模式,为人类社会带来新的财富空间。云计算,大数据、物联网和区块链,是进入这个数字空间的船,而人工智能就是那船上的帆,哥伦布之帆!


新一代技术+商业的人工智能赛博物理操作系统AI-CPS OS作为新一轮产业变革的核心驱动力,将进一步释放历次科技革命和产业变革积蓄的巨大能量,并创造新的强大引擎。重构生产、分配、交换、消费等经济活动各环节,形成从宏观到微观各领域的智能化新需求,催生新技术、新产品、新产业、新业态、新模式。引发经济结构重大变革,深刻改变人类生产生活方式和思维模式,实现社会生产力的整体跃升。





产业智能官  AI-CPS



用“人工智能赛博物理操作系统新一代技术+商业操作系统“AI-CPS OS:云计算+大数据+物联网+区块链+人工智能)在场景中构建状态感知-实时分析-自主决策-精准执行-学习提升的认知计算和机器智能;实现产业转型升级、DT驱动业务、价值创新创造的产业互联生态链






长按上方二维码关注微信公众号: AI-CPS,更多信息回复:


新技术“云计算”、“大数据”、“物联网”、“区块链”、“人工智能新产业:智能制造”、“智能农业”、“智能金融”、“智能零售”、“智能城市、“智能驾驶”新模式:“财富空间、“特色小镇”、“赛博物理”、“供应链金融”


点击“阅读原文”,访问AI-CPS OS官网




本文系“产业智能官”(公众号ID:AI-CPS)收集整理,转载请注明出处!



版权声明产业智能官(公众号ID:AI-CPS推荐的文章,除非确实无法确认,我们都会注明作者和来源。部分文章推送时未能与原作者取得联系。若涉及版权问题,烦请原作者联系我们,与您共同协商解决。联系、投稿邮箱:erp_vip@hotmail.com





登录查看更多
2

相关内容

商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
大数据安全技术研究进展
专知会员服务
92+阅读 · 2020年5月2日
【中国人民大学】机器学习的隐私保护研究综述
专知会员服务
131+阅读 · 2020年3月25日
《人工智能2020:落地挑战与应对 》56页pdf
专知会员服务
195+阅读 · 2020年3月8日
【文献综述】边缘计算与深度学习的融合综述论文
专知会员服务
165+阅读 · 2019年12月26日
【大数据白皮书 2019】中国信息通信研究院
专知会员服务
137+阅读 · 2019年12月12日
【仿真】基于大数据的机器学习与数值仿真技术
产业智能官
49+阅读 · 2019年9月3日
【知识图谱】大数据时代的知识工程与知识管理
产业智能官
22+阅读 · 2019年7月3日
【人工智能】180页PPT,讲解人工智能技术与产业发展
【推荐系统】搜狐个性化视频推荐架构设计和实践
产业智能官
9+阅读 · 2017年12月26日
【工业互联网】工业互联网与工业大数据分析的应用
产业智能官
12+阅读 · 2017年12月26日
【知识图谱】当知识图谱遇上聊天机器人
产业智能官
13+阅读 · 2017年11月10日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Arxiv
15+阅读 · 2020年2月6日
Arxiv
9+阅读 · 2019年4月19日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
8+阅读 · 2018年12月6日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
Arxiv
8+阅读 · 2018年1月25日
Arxiv
6+阅读 · 2018年1月11日
VIP会员
相关VIP内容
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
大数据安全技术研究进展
专知会员服务
92+阅读 · 2020年5月2日
【中国人民大学】机器学习的隐私保护研究综述
专知会员服务
131+阅读 · 2020年3月25日
《人工智能2020:落地挑战与应对 》56页pdf
专知会员服务
195+阅读 · 2020年3月8日
【文献综述】边缘计算与深度学习的融合综述论文
专知会员服务
165+阅读 · 2019年12月26日
【大数据白皮书 2019】中国信息通信研究院
专知会员服务
137+阅读 · 2019年12月12日
相关论文
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Arxiv
15+阅读 · 2020年2月6日
Arxiv
9+阅读 · 2019年4月19日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
8+阅读 · 2018年12月6日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
Arxiv
8+阅读 · 2018年1月25日
Arxiv
6+阅读 · 2018年1月11日
Top
微信扫码咨询专知VIP会员