Ruder博士答辩41页PPT,面向自然语言处理的神经网络迁移学习

【导读】 现实中的自然语言处理面临着多领域、多语种上的多种类型的任务,为每个任务都单独进行数据标注是不大可行的。迁移学习可以将学习的知识迁移到相关的场景下。本文介绍Sebastian Ruder博士的面向自然语言处理的神经网络迁移学习的答辩PPT。


Sebastian Ruder博士的答辩PPT《Neural Transfer Learning for Natural Language Processing》介绍了面向自然语言的迁移学习的动机、研究现状、缺陷以及自己的工作。


Sebastian Ruder博士在PPT中阐述了使用迁移学习的动机:

  • state-of-the-art的有监督学习算法比较脆弱:

    • 易受到对抗样本的影响

    • 易受到噪音数据的影响

    • 易受到释义的影响

  • 现实中的自然语言处理面临着多领域、多语种上的多种类型的任务,为每个任务都单独进行数据标注是不大可行的,而迁移学习可以将学习的知识迁移到相关的场景下

  • 许多基础的前沿的NLP技术都可以被看成是迁移学习:

    • 潜在语义分析 (Latent semantic analysis)

    • Brown clusters

    • 预训练词向量(Pretrained word embeddings)


已有的迁移学习方法往往有着下面的局限性:

  • 过度约束:预定义的相似度指标,硬参数共享

  • 设置定制化:在一个任务上进行评价,任务级别的共享策略

  • 弱baseline:缺少和传统方法的对比

  • 脆弱:在领域外表现很差,依赖语种、任务的相似性

  • 低效:需要更多的参数、时间和样本


因此,作者认为研究迁移学习需要解决下面的这些问题:

  • 克服源和目标之间的差距

  • 引起归纳偏置

  • 结合传统和现有的方法

  • 在NLP任务中跨层次迁移

  • 泛化设置


作者围绕迁移学习做了4个方面的工作:

  • 领域适应(Domain Adaption)

  • 跨语种学习(Cross-lingual learning)

  • 多任务学习(Multi-task learning)

  • 序列迁移学习(Sequential transfer learning)


具体内容可在Sebastian Ruder博士的完整答辩PPT中查看。


 请关注专知公众号(点击上方蓝色专知关注

  • 后台回复“NTLNLP” 就可以获取Sebastian Ruder博士的完整答辩PPTNeural Transfer Learning for Natural Language Processing》的下载链接~ 


PPT截图:


参考链接:

  • https://drive.google.com/file/d/1Jhzd8gWK7M_76t1WfNBcB5gzPIAYZAS1/view


-END-

专 · 知

专知《深度学习:算法到实战》课程全部完成!480+位同学在学习,现在报名,限时优惠!网易云课堂人工智能畅销榜首位!

欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程视频资料和与专家交流咨询!

请加专知小助手微信(扫一扫如下二维码添加),加入专知人工智能主题群,咨询《深度学习:算法到实战》课程,咨询技术商务合作~

请PC登录www.zhuanzhi.ai或者点击阅读原文,注册登录专知,获取更多AI知识资料!

点击“阅读原文”,了解报名专知《深度学习:算法到实战》课程

展开全文
Top
微信扫码咨询专知VIP会员