【导读】图像数据增强是计算机视觉领域中非常常见技术手段,在大量场景中均有广泛应用,本文为大家编译了图像数据增强中的深度学习方法最新综述文章,希望对大家有所帮助。
介绍:
卷积神经网络在多种计算机视觉任务中均取得了非常好的应用,但这些网络模型依赖大量数据来防止过拟合,但在许多应用场景中,并不具备很多的训练样本,例如,在医学影像分析等。
本篇综述重点关注于数据增强任务,这是一种数据有限场景下的解决方案,可以通过一系列的技术手段,来增强训练数据集的大小和质量,从而可以更加高质量的完成深度学习任务。在本文中,将包含几何变换、颜色空间增强、kernel滤波器,混合图像、随机擦出、特征空间增强、对抗训练、生成对抗网络、神经风格转移和元学习等技术方案。另外,还简要讨论了数据增强的其他特征等内容。
图像数据增强分类:
请关注专知公众号(点击上方蓝色专知关注)
后台回复“IDASY” 就可以获取《图像数据增强》完整版PPT下载链接~
内容预览:
更多完整内容,请下载观看
-END-
专 · 知
专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎登录www.zhuanzhi.ai,注册登录专知,获取更多AI知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程视频资料和与专家交流咨询!
请加专知小助手微信(扫一扫如下二维码添加),加入专知人工智能主题群,咨询技术商务合作~
专知《深度学习:算法到实战》课程全部完成!550+位同学在学习,现在报名,限时优惠!网易云课堂人工智能畅销榜首位!
点击“阅读原文”,了解报名专知《深度学习:算法到实战》课程