【导读】前些日子,大家都知道,Google 上线了基于 TensorFlow 的机器学习速成课程,它包含 40 多项练习、25 节课程以及 15 个小时的紧凑学习内容。
基于TensorFlow的机器学习速成课程25讲视频全集(01-03讲)
基于TensorFlow的机器学习速成课程25讲视频全集(04-06讲)
基于TensorFlow的机器学习速成课程25讲视频全集(10-12讲)
本课程是机器学习热爱者的自学指南,且课程资料都是中文书写,课程视频都由机器学习技术转述为中文音频。这对于中文读者来说将会有很大的帮助,我们也能选择英文语音以更精确地学习内容。这曾是 Google 内部培训工程师的课程,有近万名 Google 员工参与并将学到的东西用在产品的优化和增强上。
课程网址:
https://developers.google.cn/machine-learning/crash-course
注:最低下角可点击切换到中文版
机器学习概念
01-03讲:机器学习简介、框架处理、深入了解ML
04-06讲:降低损失、使用TF的基本步骤、泛化
07-09讲:训练集和测试集、验证、表示法
10-12讲:特征组合、简单正则化、逻辑回归
13-15讲:分类、稀疏性正则化、神经网络简介
16-18讲:训练神经网络、多类别神经网络、嵌套
机器学习工程
19-20讲:生产环境机器学习系统、静态与动态训练
21-22讲:静态与动态推理、数据依赖关系
应用示例
23-25讲:癌症预测、18世纪文字、应用准则
此单元介绍了如何使用逻辑回归来执行分类任务,并探讨了如何评估分类模型的有效性。
预计用时:8 分钟
学习目标
评估逻辑回归模型的准确率和精确率。
了解 ROC 曲线和曲线下面积。
本模块主要介绍学习多维度特征矢量的模型的特殊要求。
预计用时:2 分钟
学习目标
了解如何使信息缺乏的系数值正好为 0,以便节省 RAM。
了解 L2 正则化之外的其他类型的正则化。
神经网络是更复杂版本的特征组合。实质上,神经网络会学习适合您的相应特征组合。
预计用时:3 分钟
学习目标
对神经网络有一定的了解,尤其是了解以下方面:
隐藏层
激活函数
https://developers.google.cn/machine-learning/crash-course
-END-
专 · 知
人工智能领域主题知识资料查看获取:【专知荟萃】人工智能领域26个主题知识资料全集(入门/进阶/论文/综述/视频/专家等)
请PC登录www.zhuanzhi.ai或者点击阅读原文,注册登录专知,获取更多AI知识资料!
请扫一扫如下二维码关注我们的公众号,获取人工智能的专业知识!
请加专知小助手微信(Rancho_Fang),加入专知主题人工智能群交流!加入专知主题群(请备注主题类型:AI、NLP、CV、 KG等)交流~
投稿&广告&商务合作:fangquanyi@gmail.com
点击“阅读原文”,使用专知