【导读】知识图谱补全算法能让知识图谱变得更加完整,目前是人工智能领域的一个研究热点。为了更好地给出补全算法综述,文章按照能否处理新实体或者新关系,将知识图谱补全算法分成两类:静态知识图谱补全算法以及动态知识图谱补全算法。前者仅能处理实体以及关系都是固定的场景,扩展性较差。后者可以处理含有新实体或者新关系的场景,能够构造动态的知识图谱,具有更好的现实意义。
https://github.com/woojeongjin/dynamic-KG,欢迎查看
Temporal Knowledge Graph Completion
Dynamic Graph Embedding
Knowledge Graph Embedding
Static Graph Embedding
Survey
Others
Useful Libararies
Learning Sequence Encoders for Temporal Knowledge Graph Completion
Alberto Garcia-Duran, Sebastijan Dumancic, Mathias Niepert. EMNLP 2018.
Towards time-aware knowledge graph completion
Tingsong Jiang, Tianyu Liu, Tao Ge, Lei Sha, Baobao Chang, Sujian Li and Zhifang Sui. COLING 2016.
Predicting the co-evolution of event and knowledge graphs
Cristóbal Esteban, Volker Tresp, Yinchong Yang, Stephan Baier, Denis Krompaß. FUSION 2016.
Deriving validity time in knowledge graph
Julien Leblay and Melisachew Wudage Chekol. WWW Workshop 2018.
HyTE: Hyperplane-based Temporally aware Knowledge Graph Embedding
Shib Sankar Dasgupta, Swayambhu Nath Ray, Partha Talukdar. EMNLP 2018.
Code (TF based)
DyREP: Learning Representations over Dynamic Graphs
Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, Hongyuan Zha. ICLR 2019.
DynGEM: Deep Embedding Method for Dynamic Graphs
Palash Goyal, Nitin Kamra, Xinran He, Yan Liu. IJCAI 2017.
Graph2Seq: Scalable Learning Dynamics for Graphs
Shaileshh Bojja Venkatakrishnan, Mohammad Alizadeh, Pramod Viswanath
Dynamic Graph Representation Learning via Self-Attention Networks
Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, Hao Yang
Continuous-Time Dynamic Network Embeddings
Giang Hoang Nguyen, John Boaz Lee, Ryan A. Rossi, Nesreen K. Ahmed, Eunyee Koh, Sungchul Kim. WWW 2018.
GC-LSTM: Graph Convolution Embedded LSTM for Dynamic Link Prediction
Jinyin Chen, Xuanheng Xu, Yangyang Wu, Haibin Zheng
Learning Dynamic Embeddings from Temporal Interaction Networks
Srijan Kumar, Xikun Zhang, Jure Leskovec
Dynamic Graph Convolutional Networks
Franco Manessi, Alessandro Rozza, Mario Manzo
Streaming Graph Neural Networks
Yao Ma, Ziyi Guo, Zhaochun Ren, Eric Zhao, Jiliang Tang, Dawei Yin
Dynamic Network Embedding: An Extended Approach for Skip-gram based Network Embedding
Lun Du, Yun Wang, Guojie Song, Zhicong Lu, Junshan Wang
EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs
Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kanezashi, Tim Kaler, Charles E. Leisersen, ArXiv.
Gated Residual Recurrent Graph Neural Networks for Traffic Prediction
Cen Chen, Kenli Li, Sin G. Teo, Xiaofeng Zou, Kang Wang, Jie Wang, Zeng Zeng, AAAI 2019.
Structured Sequence Modeling with Graph Convolutional Recurrent Networks
Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, Xavier Bresson, ICONIP 2017.
Dynamic Network Embedding by Modeling Triadic Closure Process
Lekui Zhou, Yang Yang, Xiang Ren, Fei Wu, Yueting Zhuang. AAAI 2018.
Modeling Relational Data with Graph Convolutional Networks
Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, Max Welling. ESWC 2018.
Code (Keras based), Code (TF based)
Neural Relational Inference for Interacting Systems
Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, Richard Zemel. ICML 2018.
Code (Pytorch based)
Interpretable Graph Convolutional Neural Networks for Inference on Noisy Knowledge Graphs
Daniel Neil, Joss Briody, Alix Lacoste, Aaron Sim, Paidi Creed, Amir Saffari. ICONIP 2017.
Inductive Representation Learning on Large Graphs
William L. Hamilton, Rex Ying, Jure Leskovec
Code (TF based), Code (Pytorch based)
Graph Convolutional Neural Networks for Web-Scale Recommender Systems
Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, Jure Leskovec
Stochastic Training of Graph Convolutional Networks with Variance Reduction
Jianfei Chen, Jun Zhu, Le Song
A Higher-Order Graph Convolutional Layer
Sami Abu-El-Haija, Nazanin Alipourfard, Hrayr Harutyunyan, Amol Kapoor, Bryan Perozzi
Higher-order Graph Convolutional Networks
John Boaz Lee, Ryan A. Rossi, Xiangnan Kong, Sungchul Kim, Eunyee Koh, and Anup Rao
Deep Learning on Graphs: A Survey
Ziwei Zhang, Peng Cui, Wenwu Zhu
Graph Neural Networks: A Review of Methods and Applications
Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Maosong Sun
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, Philip S. Yu
A Comprehensive Survey of Graph Embedding: Problems, Techniques and Applications
Hongyun Cai, Vincent W. Zheng, Kevin Chen-Chuan Chang
How Powerful are Graph Neural Networks?
Keyulu Xu, Weihua Hu, Jure Leskovec, Stefanie Jegelka. ICLR 2019.
Temporal Convolutional Networks: A Unified Approach to Action Segmentation
Colin Lea, Rene Vidal, Austin Reiter, Gregory D. Hager
What to Do Next: Modeling User Behaviors by Time-LSTM
Yu Zhu, Hao Li, Yikang Liao, Beidou Wang, Ziyu Guan, Haifeng Liu, Deng Cai. IJCAI 2017.
Patient Subtyping via Time-Aware LSTM Networks
Inci M. Baytas, Cao Xiao, Xi Zhang, Fei Wang, Anil K. Jain, Jiayu Zhou. KDD 2017.
Deep graph library
Pytorch geometric
-END-
专 · 知
专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎登录www.zhuanzhi.ai,注册登录专知,获取更多AI知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程视频资料和与专家交流咨询!
请加专知小助手微信(扫一扫如下二维码添加),加入专知人工智能主题群,咨询技术商务合作~
专知《深度学习:算法到实战》课程全部完成!530+位同学在学习,现在报名,限时优惠!网易云课堂人工智能畅销榜首位!
点击“阅读原文”,了解报名专知《深度学习:算法到实战》课程