【Nature子刊新论文】依图科技等71位中外学者打造“人工智能儿科疾病诊断系统“,准确率90%,超人类医师

【导读】依图科技和广州妇女儿童医学中心等多位学者工作人员共同研发了一个AI儿科疾病诊断系统,通过自动学习56.7万名儿童136万份电子文本病历中的诊断逻辑,就能准确诊断多种儿科常见疾病,研究显示已经达到了儿科主治医生的水准。这是中国研究团队首次在顶级医学杂志发表有关NLP技术基于文本型电子病历(EMR)做临床智能诊断的研究成果!

https://www.nature.com/articles/s41591-018-0335-9#Sec17


使用人工智能评估和准确诊断儿科疾病

业界公认,人工智能是医疗行业革新的核心动力。然而,尽管机器学习在影像诊断方面表现强势,但在数量巨大、多样的电子病历数据分析方面,仍面临巨大挑战。电子病历的数据信息之广、数据类型之多,以及某些方面的数据贫乏及可能出现的特殊案例等,都导致机器学习难以进行精确的数据分析,并进而形成预测临床检测的数据模型。

人工智能系统诊断儿科疾病流程图

依图提出并测试了一个专门对电子医学病例进行数据挖掘的系统框架,将医学知识和数据驱动模型结合在一起。模型框架包括:首先用深度学习的方法读取NLP模型中的临床数据,包括患者病历中的主诉情况、症状、个人史、体格检查、实验室检验、影像学检查、用药信息等多方信息,输入到完全结构化的数据库中。然后是利用逻辑回归来建立层次诊断,在常见儿童疾病方面的综合诊断准确率优于相对低年资儿科医生(3年+8年临床经验)。


从数据来看,以呼吸系统疾病为例,对上呼吸道疾病和下呼吸道疾病的诊断准确率分别为89%和87%,而在上呼吸道疾病诊断中,急性喉炎和鼻窦炎的准确率分别高达86%和96%,对不同类型哮喘的诊断准确率从83%到97%。同时对普通系统性疾病以及危险程度更高的疾病也有很高的诊断准确率,例如传染性单核细胞增多症(90%)、水痘(93%)、玫瑰疹(93%)、流感(94%)、手足口病(97%)和细菌性脑膜炎(93%)。也就是说,该系统可以根据NLP系统注释的临床数据信息对儿科疾病做出准确的判断。

人工智能系统和医疗团队在儿科疾病诊断水平的比较


此次成果的核心技术部分,实际上是通过深度学习技术与医学知识图谱,对EHR数据进行解构,从而构建了高质量的智能病种库。使得后续可以较容易地利用智能病种库建立各种诊断模型。而诊断模型证明了基于AI的系统可以帮助医生处理大型数据和辅助诊断,同时在诊断的不确定性和复杂性上给予临床支持”,依图医疗总裁倪浩表示,“儿科疾病症状多种多样,临床医生同样难以区分,诊断流程费时费力,但明确诊断非常重要。拥有可与经验丰富的儿科医生相媲美的助手进行辅助诊断,能够让医生有效地降低诊断时间,显著优化诊断流程。”


广州市妇女儿童医疗中心夏慧敏教授表示,“这篇文章的启示意义在于,通过系统学习文本病历,人工智能或将可以诊断更多疾病。但须要清醒认识到,我们仍有很多基础性工作要做扎实,比如高质量数据的集成便是一个长期的过程,因为大数据的收集和分析需要算法工程师、临床医生、流行病学专家等在内的多专家的通力合作。此外,人工智能学习了海量数据,其诊断结果的准确性仍然需要更大范围的数据对其进行验证和比对。”


作为Nature杂志专注于生物医学领域的专业子刊,Nature Medicine注重基础研究和涵盖医学各方面的早期临床研究,高度关注人工智能技术对医疗行业带来的巨大革新作用。在2019年1月刊中,Nature Medicine曾发表9篇论文聚焦AI医疗,此次文章,在说明这一研究的学术领先性与应用拓展性的同时,也标志着人工智能在医疗行业的深度落地,及驱动医疗行业深层革新的巨大作用。


附录论文便捷下载:

【Nature子刊论文便捷获取】

 请关注专知公众号(点击上方蓝色专知关注

  • 后台回复“AI诊断” 就可以获取使用人工智能评估和准确诊断儿科疾病的下载链接~ 


参考资料:

http://www.chinanews.com/jk/2019/02-12/8752034.shtml


-END-

专 · 知

专知《深度学习:算法到实战》课程全部完成!480+位同学在学习,现在报名,限时优惠!网易云课堂人工智能畅销榜首位!


请加专知小助手微信(扫一扫如下二维码添加),咨询《深度学习:算法到实战》参团限时优惠报名~

欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程视频资料和与专家交流咨询!

请PC登录www.zhuanzhi.ai或者点击阅读原文,注册登录专知,获取更多AI知识资料!

点击“阅读原文”,了解报名专知《深度学习:算法到实战》课程

展开全文
Top
微信扫码咨询专知VIP会员