推荐系统领域顶会RecSys 2018接受论文列表

【导读】一年一度的推荐系统领域顶会ACM RecSys2018将在10月2日到7日的加拿大渥太华举行,最近官网公布了今年的论文接受列表,可供感兴趣的同学一看。

地址:

https://recsys.acm.org/recsys18/accepted-contributions/


  • Adaptive Collaborative Topic Modeling for Online Recommendation
    by Marie Al-Ghossein, Pierre-Alexandre Murena, Talel Abdessalem, Anthony Barré, Antoine Cornuéjols


  • LCalibrated Recommendations
    by Harald Steck


  • LPCategorical-Attributes-Based Item Classification for Recommender Systems
    by Qian Zhao, Jilin Chen, Minmin Chen, Sagar Jain, Alex Beutel, Francois Belletti, Ed Chi


  • LPCausal Embeddings for Recommendation
    by Stephen Bonner, Flavian Vaslie


  • LPComfRide: A Smartphone based System for Comfortable Public Transport Recommendation
    by Rohit Verma, Surjya Ghosh, Saketh Mahankali, Niloy Ganguly, Bivas Mitra, Sandip Chakraborty


  • LPDeep Reinforcement Learning for Page-wise Recommendations
    by Xiangyu Zhao, Long Xia, Liang Zhang, Zhuoye Ding, Dawei Yin, Jiliang Tang


  • LPEffects of Personal Characteristics on the Music Recommender with Different Controllability
    by Yucheng Jin, Nava Tintarev, Katrien Verbert


  • LPEliciting Pairwise Preferences in Recommender Systems
    by Saikishore Kalloori, Francesco Ricci, Rosella Gennari


  • LPEnhancing Structural Diversity in Social Networks by Recommending Weak Ties
    by Javier Sanz-Cruzado, Pablo Castells


  • LPExplore, Exploit, and Explain: Personalizing Explainable Recommendations with Bandits
    by James McInerney, Benjamin Lacker, Samantha Hansen, Karl Higley, Hugues Bouchard, Alois Gruson, Rishabh Mehrotra


  • LPExploring Author Gender in Book Rating and Recommendation
    by Michael D. Ekstrand, Mucun Tian, Mohammed Imran R. Kazi, Hoda Mehrpouyan, Daniel Kluver


  • LPGeneration Meets Recommendation: Proposing Novel Items for Groups of Users
    by Thanh Vinh Vo, Harold Soh


  • LPGet Me The Best: Get Me The Best: Predicting Best Answerers in Community Question Answering sites
    by Rohan Ravindra Tondulkar, Manisha Dubey, Maunendra Sankar Desarkar


  • LPHow Algorithmic Confounding in Recommendation Systems Increases Homogeneity and Decreases Utility
    by Allison Chaney, Brandon Stewart, Barbara Engelhardt


  • LPItem Recommendation on Monotonic Behavior Chains
    by Mengting Wan, Julian McAuley


  • LPInteractive Recommendation via Deep Neural Memory Augmented Contextual Bandits
    by Yilin Shen, Yue Deng, Avik Ray, Hongxia Jin


  • LPInterpreting User Inaction in Recommender Systems
    by Qian Zhao, Martijn Willemsen, Gediminas Adomavicius, F. Maxwell Harper, Joseph A. Konstan


  • LPJudging Similarity: A User-Centric Study of Related Item Recommendations
    by Yuan Yao, F. Maxwell Harper


  • LPMultistakeholder Recommendation with Provider Constraints
    by Ozge Surer, Robin Burke, Edward C. Malthouse


  • LPNeural Gaussian Mixture Model for Review-based Rating Prediction
    by Dong Deng, Liping Jing, Jian Yu, Sun Shaolong, Haofei Zhou


  • LPNo More Ready-made Deals: Constructive Recommendation for Telco Service Bundling
    by Paolo Dragone, Giovanni Pellegrini, Michele Vescovi, Katya Tentori, Andrea Passerini


  • LPOn the Robustness and Discriminative Power of IR Metrics for Top-N Recommendation
    by Daniel Valcarce, Alejandro Bellogin, Javier Parapar, Pablo Castells


  • LPOptimally Balancing Receiver and Recommended Users’ Importance in Reciprocal Recommender Systems
    by Akiva Kleinerman, Rosenfeld Ariel, Francesco Ricci, Sarit Kraus


  • LPPreference Elicitation as an Optimization Problem
    by Anna Sepliarskaia, Julia Kiseleva, Filip Radlinski, Maarten de Rijke


  • LPProviding Explanations for Recommendations in Reciprocal Environments
    by Akiva Kleinerman, Rosenfeld Ariel, Sarit Kraus


  • LPQuality-Aware Neural Complementary Item Recommendation
    by Yin Zhang, Haokai Lu, Wei Niu, James Caverlee


  • LPRecurrent Knowledge Graph Embedding for Effective Recommendation
    by Zhu Sun, Jie Yang, Jie Zhang, Alessandro Bozzon, LongKai Huang, Chi Xu


  • LPSpectral Collaborative Filtering
    by Lei Zheng, Chun-Ta Lu, Fei Jiang, Jiawei Zhang, Philip Yu


  • LPThe Art of Drafting: A Team-Oriented Hero Recommendation System for Multiplayer Online Battle Arena Games
    by Zhengxing Chen, Truong-Huy D. Nguyen, Yuyu Xu, Chris Amato, Seth Cooper, Yizhou Sun, Magy Seif El-Nasr


  • LPTranslation-based Factorization Machines for Sequential Recommendation
    by Rajiv Pasricha, Julian McAuley


  • LPUnbiased Offline Recommender Evaluation for Missing-Not-At-Random Implicit Feedback
    by Longqi Yang, Yin Cui, Yuan Xuan, Chenyang Wang, Serge Belongie, Deborah Estrin


  • LPWhy I like it: Multi-task Learning for Recommendation and Explanation
    by Yichao Lu, Ruihai Dong, Barry Smyth



-END-

专 · 知


人工智能领域26个主题知识资料全集获取与加入专知人工智能服务群: 欢迎微信扫一扫加入专知人工智能知识星球群,获取专业知识教程视频资料和与专家交流咨询!



请PC登录www.zhuanzhi.ai或者点击阅读原文,注册登录专知,获取更多AI知识资料!


请加专知小助手微信(扫一扫如下二维码添加),加入专知主题群(请备注主题类型:AI、NLP、CV、 KG等)交流~

 AI 项目技术 & 商务合作:bd@zhuanzhi.ai, 或扫描上面二维码联系!

请关注专知公众号,获取人工智能的专业知识!

点击“阅读原文”,使用专知

展开全文
Top
微信扫码咨询专知VIP会员