数十年来,因果推理是一个跨统计、计算机科学、教育、公共政策和经济学等多个领域的重要研究课题。目前,与随机对照试验相比,利用观测数据进行因果关系估计已经成为一个有吸引力的研究方向,因为有大量的可用数据和较低的预算要求。随着机器学习领域的迅速发展,各种针对观测数据的因果关系估计方法层出不穷。在这项调查中,我们提供了一个全面的综述因果推理方法下的潜在结果框架,一个众所周知的因果推理框架。这些方法根据是否需要潜在结果框架的所有三个假设分为两类。对于每一类,分别对传统的统计方法和最近的机器学习增强方法进行了讨论和比较。并介绍了这些方法的合理应用,包括在广告、推荐、医药等方面的应用。此外,还总结了常用的基准数据集和开放源代码,便于研究者和实践者探索、评价和应用因果推理方法。
地址:
https://www.zhuanzhi.ai/paper/a37f27ed97e5318b30be2999e9a768c3
专知便捷查看
便捷下载,请关注专知公众号(点击上方蓝色专知关注)
后台回复“CIS” 就可以获取《最新「因果推断Causal Inference」综述论文38页pdf》专知下载链接