【导读】新加坡国立大学的Xiang Wang、Tat-Seng Chua,以及来自中国科学技术大学的Xiangnan He在WSDM 2020会议上通过教程《Learning and Reasoning on Graph for Recommendation》介绍了基于图学习和推理的推荐系统,涵盖了基于随机游走的推荐系统、基于网络嵌入的推荐系统,基于图神经网络的推荐系统等内容。
Tutorial摘要:
推荐方法构建预测模型来估计用户-项目交互的可能性。之前的模型在很大程度上遵循了一种通用的监督学习范式——将每个交互视为一个单独的数据实例,并基于“信息孤岛”进行预测。但是,这些方法忽略了数据实例之间的关系,这可能导致性能不佳,特别是在稀疏场景中。此外,建立在单独数据实例上的模型很难展示推荐背后的原因,这使得推荐过程难以理解。
在本教程中,我们将从图学习的角度重新讨论推荐问题。用于推荐的公共数据源可以组织成图,例如用户-项目交互(二部图)、社交网络、项目知识图(异构图)等。这种基于图的组织将孤立的数据实例连接起来,为开发高阶连接带来了好处,这些连接为协作过滤、基于内容的过滤、社会影响建模和知识感知推理编码有意义的模式。随着最近图形神经网络(GNNs)的成功,基于图形的模型显示了成为下一代推荐系统技术的潜力。本教程对基于图的推荐学习方法进行了回顾,重点介绍了GNNs的最新发展和先进的推荐知识。通过在教程中介绍这一新兴而有前景的领域,我们希望观众能够对空间有更深刻的理解和准确的洞察,激发更多的想法和讨论,促进技术的发展。
Tutorial大纲:
Tutorial地址:
https://next-nus.github.io/
便捷下载:
请关注专知公众号(点击上方蓝色专知关注)
后台回复“LRGR” 就可以获取《Learning and Reasoning on Graph for Recommendation》教程的专知下载链接
教程部分内容: