深度学习注意力机制-Attention in Deep learning-附101页PPT

导读

Amazon网络服务机器学习负责人 Alexander J. Smola 在ICML2019会议上做了关于深度学习中的注意力机制的报告,详细展示了从最早的NWE到最新的Multiple Attention Heads的相关内容。


作者 | Alex Smola, Aston Zhang
编译 | Xiaowen

报告主要分为六个部分:
1. Watson Nadaraya Estimator(NWE):最早的非参数回归(Nonparametric Regression)的工具之一,更具体地说是最早核回归技术(Kernel Regression Technique由Nadaraya和Watson两人同时于1964年独立的提出
2. 池化 Pooling
  • 单目标 - 从池化 pooling 到注意力池化 attention pooling
  • 层次结构 - 分层注意力网络 Hierarchical attention network
3. 迭代池化 Iterative Pooling
  • 问答 Question answering / 记忆网络 memory networks
4. 迭代池化与生成器 Iterative Pooling and Generation
  • 神经机器翻译
5. 多头注意力网络 Multiple Attention Heads
  • Transformers / BERT
  • Lightweight, structured, sparse
6. 资源

完整PPT下载
请关注专知公众号(点击上方蓝色专知关注
  • 后台回复“ADL” 就可以获取完整版《Attention in Deep learning》的下载链接~ 


1. WNE


2. Pooling



3. Iterative Pooling



4. Iterative Pooling and Generation


篇幅有限,仅截取部分内容,完整内容请下载PPT查看。

5. Multiple Attention Heads


篇幅有限,仅截取部分内容,完整内容请下载PPT查看。



6. Resources


-END-

专 · 知


专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎登录www.zhuanzhi.ai,注册登录专知,获取更多AI知识资料!

欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程视频资料和与专家交流咨询

请加专知小助手微信(扫一扫如下二维码添加),加入专知人工智能主题群,咨询技术商务合作~

专知《深度学习:算法到实战》课程全部完成!560+位同学在学习,现在报名,限时优惠!网易云课堂人工智能畅销榜首位!

点击“阅读原文”,了解报名专知《深度学习:算法到实战》课程

展开全文
Top
微信扫码咨询专知VIP会员