【NeurIPS2019教程】深度神经网络的高效处理:从算法到硬件架构,140页ppt

近日,NeurlPS2019 大会放出了一个名为「Efficient Processing of Deep Neural Network: from Algorithms to Hardware Architectures」的演讲。该演讲主要介绍各类能够使硬件高效处理深度神经网络(DNN)计算的方法,包括在计算机视觉、语音识别、机器人等领域,而涉及到的硬件包含了从 CPU、GPU 到 FPGA 和 ASIC 等各类计算硬件。


地址:https://nips.cc/Conferences/2019/Schedule?showEvent=13206


本次演讲的主要目标如下:


  • 1. 让硬件高效处理 DNN 的方法(非常多);

  • 2. 关注包括设计 DNN 硬件处理器和 DNN 模型的评估方法;

  •  设计 DNN 硬件处理器和 DNN 模型的方法;

  •  研究过程中,你应当问什么样的关键问题;

  • 3. 具体地,演讲还会讨论;

  •  真正需要评价和对比的评估指标体系;

  •  达成这些指标的挑战;

  •  了解设计中需要考虑到的问题,以及可能平衡在算法性能和耗能中遇到的问题;

  • 4. 要关注硬件推理,但包括一部分训练的内容。


在讲解的过程中,Sze 教授会穿插大量的图解和案例,让介绍更加充实有趣。


请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“EPDNN” 就可以获取教程140页PPT的下载链接索引~ 


-END-
专 · 知


专知,专业可信的人工智能知识分发 ,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程视频资料和与专家交流咨询
点击“阅读原文”,了解使用专知,查看5000+AI主题知识资料
展开全文
Top
微信扫码咨询专知VIP会员