作者 | ShownX 编译 | Xiaowen Github: https://github.com/ShownX/FacePaperCollection
目录
① 工具包
② 人脸检测(Face Detection)
③ 人脸对齐(Face Alignment)
④ 人脸重建(Face Reconstruction)
⑤ 人脸识别(Face Recognition)
⑥ 人脸生成(face Generation)
01
工具包
FaRE: Open Source Face Recognition Performance Evaluation Package [Paper]:https://arxiv.org/abs/1901.09447
Gluon Toolkit for Face Recognition [MXNET]
Deep Learning:
MXNet and Gluon: A flexible and efficient library for deep learning.
Torch and PyTorch: Tensors and Dynamic neural networks in Python with strong GPU acceleration.
TensorFlow: An open-source software library for Machine Intelligence.
Caffe and Caffe2: A lightweight, modular, and scalable deep learning framework.
Machine Learning:
Dlib: A machine learning toolkit.
Computer Vision:
OpenCV: Open Source Computer Vision Library.
Probabilistic Programming
Pyro: Deep universal probabilistic programming with Python and PyTorch
02
人脸检测
Face Detection
数据集
Wildest Faces: Face Detection and Recognition in Violent Settings
https://arxiv.org/abs/1805.07566
WIDER FACE: A Face Detection Benchmark
http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/support/paper.pdf
Project:http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/WiderFace_Results.html
FDDB: Face Detection and Data Set Benchmark
https://www.cics.umass.edu/~elm/papers/fddb.pdf
Project:
http://vis-www.cs.umass.edu/fddb/
AFLW: Annotated Facial Landmarks in the Wild: A Large-scale, Real-world Database for Facial Landmark Localization
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.384.2988&rep=rep1&type=pdf
Project
https://lrs.icg.tugraz.at/research/aflw/
研究
PyramidBox: A Context-assisted Single Shot Face Detector
[ Paper] https://arxiv.org/pdf/1803.07737.pdf
[TensorFlow] https://github.com/EricZgw/PyramidBox
[PyTorch] https://github.com/Goingqs/PyramidBox
[MXNet] https://github.com/JJXiangJiaoJun/gluon_PyramidBox
Face Attention Network: An Effective Face Detector for the Occluded Faces
[Paper] https://arxiv.org/abs/1711.07246
[PyTorch] https://github.com/rainofmine/Face_Attention_Network
FaceNess-Net: Face Detection through Deep Facial Part Responses:
[Paper] https://arxiv.org/pdf/1701.08393.pdf
S3FD: Single Shot Scale-invariant Face Detector
[Paper] http://openaccess.thecvf.com/content_ICCV_2017/papers/Zhang_S3FD_Single_Shot_ICCV_2017_paper.pdf
[Caffe] http://openaccess.thecvf.com/content_ICCV_2017/papers/Zhang_S3FD_Single_Shot_ICCV_2017_paper.pdf
[PyTorch] https://github.com/clcarwin/SFD_pytorch
Finding Tiny Faces:
[Project] https://www.cs.cmu.edu/~peiyunh/tiny/
[Paper] https://arxiv.org/abs/1612.04402
[MatConvNet + MATLAB] https://github.com/peiyunh/tiny
[TensorFlow] https://github.com/cydonia999/Tiny_Faces_in_Tensorflow
[MXNET] https://github.com/zzw1123/mxnet-finding-tiny-face
SSH: Single Stage Headless Face Detector:
[Paper] https://arxiv.org/pdf/1708.03979.pdf
[Caffe] https://github.com/mahyarnajibi/SSH
[TensorFlow] https://github.com/ailias/Focal-Loss-implement-on-Tensorflow
[MXNET] https://github.com/unsky/focal-loss
Focal Loss for Dense Object Detection:
[Paper] https://arxiv.org/abs/1708.02002
[Caffe] https://github.com/chuanqi305/FocalLoss
[TensorFlow] https://github.com/ailias/Focal-Loss-implement-on-Tensorflow
[MXNET] https://github.com/unsky/focal-loss
Face R-CNN:
[Paper] https://arxiv.org/abs/1706.01061
[Caffe] https://github.com/playerkk/face-py-faster-rcnn
FaceBoxes: A CPU Real-time Face Detector with High Accuracy
[Paper] http://cn.arxiv.org/abs/1708.05234
[Caffe] https://github.com/zeusees/FaceBoxes
Multiview Face Detection:
[Paper] https://arxiv.org/abs/1502.02766
[Caffe] https://github.com/guoyilin/FaceDetection_CNN
03
人脸对齐
Face Alignment
数据集
LS3D-W: How far are we from solving the 2D & 3D Face Alignment problem? (and a dataset of 230,000 3D facial landmarks)
[Project] https://www.adrianbulat.com/face-alignment
AFLW: Annotated Facial Landmarks in the Wild: A Large-scale, Real-world Database for Facial Landmark Localization.
[Project] https://lrs.icg.tugraz.at/research/aflw/
300-W
[Project] https://ibug.doc.ic.ac.uk/resources/300-W/
300-VW
[Project] https://ibug.doc.ic.ac.uk/resources/300-VW/
研究
FAN: How far are we from solving the 2D & 3D Face Alignment problem?
[Paper] https://arxiv.org/abs/1703.07332
[PyTorch] https://github.com/1adrianb/face-alignment
JFA: Joint Head Pose Estimation and Face Alignment Framework Using Global and Local CNN Features
[Paper] http://cbl.uh.edu/pub_files/07961802.pdf
MDM: Mnemonic Descent Method
[Paper] https://ibug.doc.ic.ac.uk/media/uploads/documents/trigeorgis2016mnemonic.pdf
[TensorFlow] https://github.com/trigeorgis/mdm
RDL: Recurrent 3D-2D Dual Learning for Large-pose Facial Landmark Detection
[Paper] http://openaccess.thecvf.com/content_ICCV_2017/papers/Xiao_Recurrent_3D-2D_Dual_ICCV_2017_paper.pdf
PIFA: Pose-invariant 3D face alignment
[Paper] https://arxiv.org/abs/1506.03799
[Code] http://cvlab.cse.msu.edu/project-pifa.html
04
人脸重建
Face Reconstruction
研究
UH-E2FAR: End-to-end 3D face reconstruction with deep neural networks:
[Paper] https://arxiv.org/abs/1704.05020
Multi-View 3D Face Reconstruction with Deep Recurrent Neural Networks:
[Paper] http://cbl.uh.edu/pub_files/IJCB-2017-PD.pdf
3D Face Morphable Models "In-the-Wild"
[Paper] http://openaccess.thecvf.com/content_cvpr_2017/papers/Booth_3D_Face_Morphable_CVPR_2017_paper.pdf
3DMM-CNN
[Paper] https://arxiv.org/pdf/1612.04904.pdf
[Code] https://github.com/anhttran/3dmm_cnn
VRN
[Paper] https://arxiv.org/pdf/1703.07834.pdf
[Code] https://github.com/AaronJackson/vrn
[Online Demo] http://cvl-demos.cs.nott.ac.uk/vrn
3DFaceNet
[Paper] https://arxiv.org/pdf/1708.00980.pdf
MoFA: Unsupervised learning for 3D model and pose parameters
[Paper] https://arxiv.org/abs/1703.10580
3DMM-STN: Using 3DMM to transfer 2D image to 2D image texture
[Paper] https://arxiv.org/abs/1708.07199
Dense Semantic and Topological Correspondence of 3D Faces without Landmarks
Generating 3D Faces using Convolutional Mesh Autoencoders
[Paper] https://arxiv.org/pdf/1807.10267.pdf
[Code] https://github.com/anuragranj/coma
05
人脸识别
Face Recognition
教程
Deep Learning for Face Recognition
http://valse.mmcheng.net/deep-learning-for-face-recognition/
数据集
MS-Celeb-1M: Microsoft dataset contains around 1M subjects
[Project] https://www.microsoft.com/en-us/research/project/ms-celeb-1m-challenge-recognizing-one-million-celebrities-real-world/
[Paper] https://arxiv.org/abs/1607.08221
CASIA WebFace: 10,575 subjects and 494,414 images
[Project] http://www.cbsr.ia.ac.cn/english/CASIA-WebFace-Database.html
[Paper] http://arxiv.org/abs/1411.7923
CelebA: 202,599 images and 10,177 subjects, 5 landmark locations, 40 binary attributes
[Project] http://mmlab.ie.cuhk.edu.hk/projects/
VGG-Face2: A large-scale face dataset contains 3.31 million imaes of 9131 identities.
[Project] http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/
LFW: Labeled Face in the Wild: 13,000 images and 5749 subjects
[Download] http://vis-www.cs.umass.edu/lfw/
CFP: Celebrities in Frontal-Profile in the Wild
[Project] http://www.cfpw.io/
[Paper] http://www.cfpw.io/paper.pdf
MegaFace: 1 Million Faces for Recognition at Scale, 690,572 subjects
[Download] http://megaface.cs.washington.edu/
Surveillance Face Recognition Challenge
[Project] https://qmul-survface.github.io/
[Paper] https://arxiv.org/abs/1804.09691
UHDB31: UHDB31: A Dataset for Better Understanding Face Recognition across Pose and Illumination Variation
[Paper] http://cbl.uh.edu/pub_files/UHDB31_-_CHI_Workshop_-_Final
IJB-C: IARPA Janus Benchmark-C: Face dataset and protocol
[Paper] https://noblis.org/wp-content/uploads/2018/03/icb2018.pdf
IJB-B: IARPA Janus Benchmark-B Face Dataset
[Paper] https://www.nist.gov/document/ijbbchallengedocumentationreadmepdf
IJB-A: Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A
[Paper] https://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1B_089_ext.pdf
Unconstrained Face Detection and Open-Set Face Recognition Challenge
[Project] http://vast.uccs.edu/Opensetface/
[Paper] https://arxiv.org/abs/1708.02337
MegaFace: 1 Million Faces for Recognition at Scale, 690,572 subjects
[Download] http://megaface.cs.washington.edu/
ResNet-101, DenseNet-121 provided by FaRE
https://arxiv.org/abs/1901.09447
ResNet-50, SE-ResNet-50 provided by VGG-Face2
[Download] https://github.com/ox-vgg/vgg_face2
VGG-16 provided by VGG-Face
http://www.robots.ox.ac.uk/~vgg/software/vgg_face/
InsightFace
[Download] https://github.com/deepinsight/insightface
Pairwise Relation Network, ECCV18:
[Paper] https://arxiv.org/pdf/1808.04976.pdf
GridFace: Face Rectification via Learning Local Homography Transformation, ECCV18:
[Paper] http://openaccess.thecvf.com/content_ECCV_2018/papers/Zhou_GridFace_Face_Rectification_ECCV_2018_paper.pdf
Consensus-Driven Propagation in Massive Unlabeled Data for Face Recognition, ECCV18:
[Paper] http://openaccess.thecvf.com/content_ECCV_2018/papers/Xiaohang_Zhan_Consensus-Driven_Propagation_in_ECCV_2018_paper.pdf
Face Recognition with Contrastive Convolution, ECCV18:
[Paper] http://openaccess.thecvf.com/content_ECCV_2018/papers/Chunrui_Han_Face_Recognition_with_ECCV_2018_paper.pdf
FaceNet: A Unified Embedding for Face Recognition and Clustering, CVPR15
[Paper] https://arxiv.org/abs/1503.03832
[TensorFlow] https://github.com/davidsandberg/facenet
DeepID series, CVPR14:
[DeepID] http://mmlab.ie.cuhk.edu.hk/pdf/YiSun_CVPR14.pdf
[DeepID2] http://arxiv.org/abs/1406.4773
[DeepID3] http://arxiv.org/abs/1502.00873
DeepFace: Closing the Gap to Human-Level Performance in Face Verification, CVPR14:
[Paper] https://www.cs.toronto.edu/~ranzato/publications/taigman_cvpr14.pdf
Dependency-aware Attention Control for Unconstrained Face Recognition with Image Sets, ECCV, 2018
Comparator Network, ECCV, 2018
[Pytorch] https://github.com/yeomko22/ComparatorNetwork_pytorch
InsightFace (ArcFace): Additive Angular Margin Loss for Deep Face Recognition, ArXiv, 2018
[MXNet] https://github.com/deepinsight/insightface
CosFace: Large Margin Cosine Loss for Deep Face Recognition, CVPR, 2018
[TensorFlow] https://github.com/yule-li/CosFace
[MXNet] https://github.com/deepinsight/insightface
Ring loss: Convex Feature Normalization for Face Recognition
[Paper] https://arxiv.org/abs/1803.00130
[PyTorch] https://github.com/Paralysis/ringloss
Git Loss for Deep Face Recognition
[Paper] https://arxiv.org/abs/1807.08512
A-Softmax Loss (SphereFace)
[Paper] https://arxiv.org/abs/1704.08063
[Caffe] https://github.com/wy1iu/sphereface
Triplet Loss
[Paper] http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1A_089.pdf
[Torch] https://github.com/cmusatyalab/openface
[TensorFlow] https://github.com/davidsandberg/facenet
Center Loss
[Paper] http://ydwen.github.io/papers/WenECCV16.pdf
[Caffe + MATLAB] https://github.com/ydwen/caffe-face
[MXNet] https://github.com/pangyupo/mxnet_center_loss
Range Loss
[Paper] https://arxiv.org/abs/1611.08976
[Caffe] https://github.com/Charrin/RangeLoss-Caffe
L-Softmax
[Paper] https://arxiv.org/abs/1612.02295
[Caffe] https://github.com/wy1iu/LargeMargin_Softmax_Loss
[MXNet] https://github.com/luoyetx/mx-lsoftmax
Marginal Loss
[Paper] https://ibug.doc.ic.ac.uk/media/uploads/documents/deng_marginal_loss_for_cvpr_2017_paper.pdf
UR2D-E:Evaluation of a 3D-aided Pose Invariant 2D Face Recognition System
http://cbl.uh.edu/pub_files/IJCB-2017-XX.pdf
SeetaFaceEngine: An open source C++ face recognition engine.
[C++] https://github.com/seetaface/SeetaFaceEngine
OpenFace: Face recognition with Google's FaceNet deep neural network using Torch]
[Torch +Python] https://github.com/cmusatyalab/openface
06
人脸生成
Face Generation
研究
TP-GAN: [Paper] https://arxiv.org/abs/1704.04086
FF-GAN: [Paper] https://arxiv.org/abs/1704.06244
DR-GAN:
[Paper] http://cvlab.cse.msu.edu/pdfs/Tran_Yin_Liu_CVPR2017.pdf
[Website] http://cvlab.cse.msu.edu/project-dr-gan.html
BEGAN: Boundary Equilibrium Generative Adversarial Networks
[Paper] https://arxiv.org/abs/1703.10717
-END-
专 · 知
专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎登录www.zhuanzhi.ai,注册登录专知,获取更多AI知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程视频资料和与专家交流咨询!
请加专知小助手微信(扫一扫如下二维码添加),加入专知人工智能主题群,咨询技术商务合作~
专知《深度学习:算法到实战》课程全部完成!540+位同学在学习,现在报名,限时优惠!网易云课堂人工智能畅销榜首位!
点击“阅读原文”,了解报名专知《深度学习:算法到实战》课程