【专知荟萃15】图像检索Image Retrieval知识资料全集(入门/进阶/综述/视频/代码/专家,附PDF下载)

点击上方“专知”关注获取专业AI知识!


【导读】主题荟萃知识是专知的核心功能之一,为用户提供AI领域系统性的知识学习服务。主题荟萃为用户提供全网关于该主题的精华(Awesome)知识资料收录整理,使得AI从业者便捷学习和解决工作问题!在专知人工智能主题知识树基础上,主题荟萃由专业人工编辑和算法工具辅助协作完成,并保持动态更新!另外欢迎对此创作主题荟萃感兴趣的同学,请加入我们专知AI创作者计划,共创共赢! 今天专知为大家呈送第十五篇专知主题荟萃-图像检索知识资料大全集荟萃 (入门/进阶/综述/视频/代码/专家等),请大家查看!专知访问www.zhuanzhi.ai,  或关注微信公众号后台回复" 专知"进入专知,搜索主题“图像检索”查看。此外,我们也提供该文网页桌面手机端(www.zhuanzhi.ai)完整访问,可直接点击访问收录链接地址,以及pdf版下载链接,请文章末尾查看!此为初始版本,请大家指正补充,欢迎在后台留言!欢迎大家分享转发~



  • 图像检索(Image Retrieval)专知荟萃

    • 入门学习

    • 进阶文章

    • 综述

    • Tutorial

    • 视频教程

    • 代码

    • 领域专家

    • Datasets


入门学习

  1. 相似图片搜索的原理 阮一峰

    • [http://www.ruanyifeng.com/blog/2011/07/principle_of_similar_image_search.html\]

  2. Google 图片搜索的原理是什么?

    • [https://www.zhihu.com/question/19726630]

  3. 基于内容的图像检索技(CBIR)术相术介绍

    • [http://blog.csdn.net/kezunhai/article/details/11614989]

  4. 图像检索:基于内容的图像检索技术

    • [http://yongyuan.name/blog/cbir-technique-summary.html]

  5. 基于内容的图像检索技术

    • [http://www.cs.cmu.edu/~juny/Prof/papers/Part2-CBIR.pdf\]

  6. 图像检索:CNN卷积神经网络与实战 CNN for Image Retrieval

    • [http://yongyuan.name/blog/CBIR-CNN-and-practice.html]

  7. 用Python和OpenCV创建一个图片搜索引擎的完整指南

    • [http://blog.csdn.net/kezunhai/article/details/46417041]


进阶文章

2011

  1. Using Very Deep Autoencoders for Content-Based Image Retrieval

    • [https://www.cs.toronto.edu/~hinton/absps/esann-deep-final.pdf\]


2013

  1. Learning High-level Image Representation for Image Retrieval via Multi-Task DNN using Clickthrough Data

    • [http://arxiv.org/abs/1312.4740]


2014

  1. Neural Codes for Image Retrieval

    • [http://arxiv.org/abs/1404.1777]

  2. Efficient On-the-fly Category Retrieval using ConvNets and GPUs

    • [http://arxiv.org/abs/1407.4764]


2015

  1. Learning visual similarity for product design with convolutional neural networks SIGGRAPH 2015

    • [http://www.cs.cornell.edu/~kb/publications/SIG15ProductNet.pdf\]

  2. Exploiting Local Features from Deep Networks for Image Retrieval

    • [https://arxiv.org/abs/1504.05133]

  3. Cross-domain Image Retrieval with a Dual Attribute-aware Ranking Network ICCV 2015

    • [http://arxiv.org/abs/1505.07922]

  4. Where to Buy It: Matching Street Clothing Photos in Online Shops ICCV 2015

    • [http://www.tamaraberg.com/papers/street2shop.pdf]

  5. Aggregating Deep Convolutional Features for Image Retrieval

    • [http://arxiv.org/abs/1510.07493]

  6. Particular object retrieval with integral max-pooling of CNN activations

    • [https://arxiv.org/abs/1511.05879]


2016

  1. Deep Image Retrieval: Learning global representations for image search ECCV 2016

    • [https://arxiv.org/abs/1604.01325]

  2. Learning Compact Binary Descriptors with Unsupervised Deep Neural Networks. CVPR 2016

    • [http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Lin_Learning_Compact_Binary_CVPR_2016_paper.pdf\]

  3. Fast Training of Triplet-based Deep Binary Embedding Networks. CVPR 2016

    • [http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhuang_Fast_Training_of_CVPR_2016_paper.pdf\]

  4. Deep Relative Distance Learning: Tell the Difference Between Similar Vehicles. CVPR 2016

    • [http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Liu_Deep_Relative_Distance_CVPR_2016_paper.pdf\]

  5. Bags of Local Convolutional Features for Scalable Instance Search. Best Poster Award at ICMR 2016.

    • [https://imatge-upc.github.io/retrieval-2016-icmr/]

  6. Group Invariant Deep Representations for Image Instance Retrieval

    • [http://arxiv.org/abs/1601.02093]

  7. Natural Language Object Retrieval

    • [http://arxiv.org/abs/1511.04164]

  8. Faster R-CNN Features for Instance Search

    • [http://imatge-upc.github.io/retrieval-2016-deepvision/]

  9. Where to Focus: Query Adaptive Matching for Instance Retrieval Using Convolutional Feature Maps

    • [https://arxiv.org/abs/1606.06811]

  10. Adversarial Training For Sketch Retrieval

    • [http://arxiv.org/abs/1607.02748]

  11. DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations

    • [http://personal.ie.cuhk.edu.hk/~lz013/projects/DeepFashion.html\]

  12. CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples

    • [http://cmp.felk.cvut.cz/~radenfil/projects/siamac.html\]

  13. PicHunt: Social Media Image Retrieval for Improved Law Enforcement

    • [http://arxiv.org/abs/1608.00905]

  14. The Sketchy Database: Learning to Retrieve Badly Drawn Bunnies

    • [http://sketchy.eye.gatech.edu/]

  15. End-to-end Learning of Deep Visual Representations for Image Retrieval

    • [http://www.xrce.xerox.com/Research-Development/Computer-Vision/Learning-Visual-Representations/Deep-Image-Retrieval]

  16. What Is the Best Practice for CNNs Applied to Visual Instance Retrieval?

    • [https://arxiv.org/abs/1611.01640]


2017

  1. AMC: Attention guided Multi-modal Correlation Learning for Image Search. CVPR 2017

    • [https://arxiv.org/abs/1704.00763]

  2. Deep image representations using caption generators. ICME 2017

    • [https://arxiv.org/abs/1705.09142]

  3. One-Shot Fine-Grained Instance Retrieval. ACM MM 2017

    • [https://arxiv.org/abs/1707.00811]

  4. Selective Deep Convolutional Features for Image Retrieval. ACM MM 2017

    • [https://arxiv.org/abs/1707.00809]

  5. Deep Binaries: Encoding Semantic-Rich Cues for Efficient Textual-Visual Cross Retrieval. ICCV 2017

    • [https://arxiv.org/abs/1708.02531]

  6. Image2song: Song Retrieval via Bridging Image Content and Lyric Words. ICCV 2017

    • [https://arxiv.org/abs/1708.05851]

  7. SIFT Meets CNN: A Decade Survey of Instance Retrieval

    • [http://arxiv.org/abs/1608.01807]

  8. Image Retrieval with Deep Local Features and Attention-based Keypoints

    • [https://arxiv.org/abs/1612.05478]


综述

  1. Recent Advance in Content-based Image Retrieval: A Literature Survey. Wengang Zhou, Houqiang Li, and Qi Tian 2017

    • [https://arxiv.org/pdf/1706.06064.pdf]

  2. Intelligent Image Retrieval Techniques: A Survey 2014

    • [http://www.sciencedirect.com/science/article/pii/S1665642314716098]

  3. A survey on content based image retrieval. 2013

    • [http://ieeexplore.ieee.org/document/6496719/]


Tutorial

  1. CVPR’16 Tutorial on Image Tag Assignment, Refinement and Retrieval

    • [http://www.lambertoballan.net/2016/06/cvpr16-tutorial-image-tag-assignment-refinement-and-retrieval/]

  2. Content-based image retrieval tutorial by Joani Mitro

    • [https://arxiv.org/pdf/1608.03811.pdf]

  3. Tutorial on Image Retrieval System, (IRS)

    • [http://da.biostr.washington.edu/~sigdemos/tutorial/tutorial.pdf\]


视频教程

  1. Deep Image Retrieval: Learning global representations for image search

    • [https://www.youtube.com/watch?v=yT52xDML6ys]

  2. Image Instance Retrieval: Overview of state-of-the-art

    • [https://www.youtube.com/watch?v=EYq-rpaZn1o]


代码

  1. Neural Codes for Image Retrieval

    • [https://github.com/arbabenko/Spoc]

  2. Natural Language Object Retrieval

    • [https://github.com/andrewliao11/Natural-Language-Object-Retrieval-tensorflow]

  3. Bags of Local Convolutional Features for Scalable Instance Search

    • [https://github.com/imatge-upc/retrieval-2016-icmr]

  4. Faster R-CNN Features for Instance Search

    • [https://github.com/imatge-upc/retrieval-2016-deepvision]

  5. CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples

    • [http://ptak.felk.cvut.cz/personal/radenfil/siamac/siaMAC_code.tar.gz\]

  6. Class-Weighted Convolutional Features for Visual Instance Search

    • [https://github.com/imatge-upc/retrieval-2017-cam]


领域专家

  1. Hervé Jégou

    • [http://people.rennes.inria.fr/Herve.Jegou/]

  2. Andrew Zisserman

    • [https://www.robots.ox.ac.uk/~az/\]

  3. Qi Tian

    • [http://www.cs.utsa.edu/~qitian/\]

  4. Artem Babenko

    • [https://www.hse.ru/en/org/persons/133709478]


Datasets

  1. Corel 1000 and 10,000 图像数据库

    • [http://wang.ist.psu.edu/docs/related/]

  2. The COREL Database for Content based Image Retrieval

    • [https://sites.google.com/site/dctresearch/Home/content-based-image-retrieval]

  3. Corel-5K and Corel -10K Datasets该页面下面给出了图片的链接,可以用python写个脚本把它们爬下来。

    • [http://www.ci.gxnu.edu.cn/cbir/Dataset.aspx]

  4. INSTRE,中科院计算所弄的一个数据库28543张图片,还有他们做的web检索系统ISIA。

    • [http://vipl.ict.ac.cn/isia/instre/]

  5. MIRFLICKR 1M数据库,100多g.

    • [http://press.liacs.nl/mirflickr/mirdownload.html]

  6. Image Similarity Triplet Dataset

    • [http://users.eecs.northwestern.edu/~jwa368/my_data.html\]

  7. INRIA Holidays 该数据集是Herve Jegou研究所经常度假时拍的图片(风景为主),一共1491张图,500张query(一张图一个group)和对应着991张相关图像,已提取了128维的SIFT点4455091个,visual dictionaries来自Flickr60K.

    • [http://lear.inrialpes.fr/~jegou/data.php\]

  8. Oxford Buildings Dataset,5k Dataset images,有5062张图片,是牛津大学VGG小组公布的,在基于词汇树做检索的论文里面,这个数据库出现的频率极高。

    • [http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/\]

  9. Oxford Paris,The Paris Dataset,oxford的VGG组从Flickr搜集了6412张巴黎旅游图片,包括Eiffel Tower等。

    • [http://www.robots.ox.ac.uk/~vgg/data/parisbuildings/\]

  10. 201Books and CTurin180 The CTurin180 and 201Books Data Sets,2011.5,Telecom Italia提供于Compact Descriptors for Visual Search,该数据集包括:Nokia E7拍摄的201本书的封面图片(多视角拍摄,各6张),共1.3GB; Turin市180个建筑的视频图像,拍摄的camera有Galaxy S、iPhone 3、Canon A410、Canon S5 IS,共2.7GB

    • [http://pacific.tilab.com/www/datasets/]

  11. Stanford Mobile Visual Search,Stanford Mobile Visual Search Dataset,2011.2,stanford提供,包括8种场景,如CD封面、油画等,每组相关图片都是采自不同相机(手机),所有场景共500张图;以后又发布了一个patch数据集,Compact Descriptors for Visual Search Patches Dataset,校对了相同patch。

    • [https://purl.stanford.edu/rb470rw0983]

  12. UKBench,UKBench database,2006.7,Henrik Stewénius在他CVPR06文章中提供的数据集,图像都为640x480,每个group有4张图,文件接近2GB,提供visual words。

    • [http://vis.uky.edu/~stewe/ukbench/\]


初步版本,水平有限,有错误或者不完善的地方,欢迎大家提建议和补充,会一直保持更新,敬请关注http://www.zhuanzhi.ai 和关注专知公众号,获取最新AI相关知识


欢迎转发到你的微信群和朋友圈,分享专业AI知识!



特别提示-专知图像检索主题:

获取完整版查看,最新更新知识资料请PC登录www.zhuanzhi.ai或者点击阅读原文注册登录,顶端搜索“图像检索” 主题,查看获得专知荟萃全集知识等资料,直接PC端访问体验更佳!如下图所示~



此外,请关注专知公众号(扫一扫最下面专知二维码,或者点击上方蓝色专知),

  • 后台回复“图像检索”或者“CBIR” 就可以在手机端获取专知图像检索知识资料pdf下载和查看链接地址,直接打开荟萃资料的链接地址~~


往期专知荟萃知识资料全集获取(关注本公众号-专知,获取下载链接),请查看:

【专知荟萃01】深度学习知识资料大全集(入门/进阶/论文/代码/数据/综述/领域专家等)(附pdf下载)

【专知荟萃02】自然语言处理NLP知识资料大全集(入门/进阶/论文/Toolkit/数据/综述/专家等)(附pdf下载)

【专知荟萃03】知识图谱KG知识资料全集(入门/进阶/论文/代码/数据/综述/专家等)(附pdf下载)

【专知荟萃04】自动问答QA知识资料全集(入门/进阶/论文/代码/数据/综述/专家等)(附pdf下载)

【专知荟萃05】聊天机器人Chatbot知识资料全集(入门/进阶/论文/软件/数据/专家等)(附pdf下载)

【专知荟萃06】计算机视觉CV知识资料大全集(入门/进阶/论文/课程/会议/专家等)(附pdf下载)

【专知荟萃07】自动文摘AS知识资料全集(入门/进阶/代码/数据/专家等)(附pdf下载)

【专知荟萃08】图像描述生成Image Caption知识资料全集(入门/进阶/论文/综述/视频/专家等)

【专知荟萃09】目标检测知识资料全集(入门/进阶/论文/综述/视频/代码等)

【专知荟萃10】推荐系统RS知识资料全集(入门/进阶/论文/综述/视频/代码等)

【专知荟萃11】GAN生成式对抗网络知识资料全集(理论/报告/教程/综述/代码等)

【专知荟萃12】信息检索 Information Retrieval 知识资料全集(入门/进阶/综述/代码/专家,附PDF下载)

【专知荟萃13】工业学术界用户画像 User Profile 实用知识资料全集(入门/进阶/竞赛/论文/PPT,附PDF下载)

【专知荟萃14】机器翻译 Machine Translation知识资料全集(入门/进阶/综述/视频/代码/专家,附PDF下载)


请扫描小助手,加入专知人工智能群,交流分享~

-END-

欢迎使用专知

专知,一个新的认知方式!专注在人工智能领域为AI从业者提供专业可信的知识分发服务, 包括主题定制、主题链路、搜索发现等服务,帮你又好又快找到所需知识。


使用方法>>访问www.zhuanzhi.ai, 或点击文章下方“阅读原文”即可访问专知

中国科学院自动化研究所专知团队

@2017 专知

专 · 知

关注我们的公众号,获取最新关于专知以及人工智能的资讯、技术、算法、深度干货等内容。扫一扫下方关注我们的微信公众号。


点击“阅读原文”,使用专知


展开全文
Top
微信扫码咨询专知VIP会员