DeepMind-深度学习: AI革命及其前沿进展 (54页ppt报告)

【导读】2018年9 月 9 日-14 日,DeepMind主办的Deep Learning Indaba 2018 大会在南非斯泰伦博斯举行。会上,牛津大学教授Nando de Freitas和其他15位专家做了《深度学习: AI革命及其前沿进展》的报告


请关注专知公众号(扫一扫最下面专知二维码,或者点击上方蓝色专知)

  • 后台回复“DLAI” 就可以获取全文报告PDF下载链接~ 


Nando de Freitas

Nando de Freitas是一名来自牛津大学的拥有高声望和优良业界口碑的机器学习教授。在2000年拿到Trinity College的博士学位后,1999至2001年他在 UC Berkeley担任博后,2001至2014年在 University of British Columbia担任教授,他还是加拿大高级科研学会(CIFAR)的一员,并拿到了许多学术类的奖项。Nando本人在其网站上这样简洁地描述他的兴趣:我想明白智能以及思考的机理。我的工具有计算机科学,统计学,数学和无尽的思考。2015年12月26日,Nando de Freitas加入了由Reddit管理的AMA(Ask Me Anything)平台。


报告导读


人工智能进展的关键要素:基础科学理论、数据、计算力、算法软件


深度学为什么成功的另一视角: 深度神经网络从数据中学习


神经编程编译器


人工智能前沿7大热点:

  1. 强化学习

  2. 元学习

  3. 模仿学习

  4. 机器人

  5. 概念与抽象

  6. 感知与意识

  7. 因果推理


强化学习框架


AlphaZero




模仿:帮助我们在强化学习中解决探索

模仿人学习非常重要:翻译、语音模型,通用协同


观看Youtube视频学习,人可以从视频中学习各种技能,机器是否同样来学习?


挑战:领域鸿沟、没有动作、没有奖赏


跨模态距离分类


时序距离分类


感知意识:思维意识理论

世界自身的知识能够帮助解构和表示学习

学习确认的智能代理、行为和意图非常重要

一个智能机器必须知道它知道什么和它不知道什么

感知意识提供一个模仿学习的框架


慢学习以更快学习


few shot 元学习



条件策略的one-shot 模仿学习


因果推理


其他人工智能的前沿领域包括:

  • 抽象,概念、关系,物体,程序,架构

  • 自监督自动选取任务

  • 持续性知识表示

  • 基准性语言理解

  • 情感性动机型系统

  • 鲁棒性、灵活性与软件框架

  • 模块发明

  • 道德和治理



感谢您阅读到此处,今天给大家一个福利,万门大学的人工智能课程。课程老师都来自法国巴黎高师(这是一所诺奖得主比例高于普林斯顿的学校)。

万门的课程除了人工智能、大数据、数据挖掘,更有经济金融、数学物理、心理哲学、博弈论、音乐美术等,还有小学、中学、K12,这些课程都有免费,大家扫码后,按照要求操作即可领取。


-END-

专 · 知


人工智能领域26个主题知识资料全集获取与加入专知人工智能服务群: 欢迎微信扫一扫加入专知人工智能知识星球群,获取专业知识教程视频资料和与专家交流咨询!



请PC登录www.zhuanzhi.ai或者点击阅读原文,注册登录专知,获取更多AI知识资料!


请加专知小助手微信(扫一扫如下二维码添加),加入专知主题群(请备注主题类型:AI、NLP、CV、 KG等)交流~

 AI 项目技术 & 商务合作:bd@zhuanzhi.ai, 或扫描上面二维码联系!

请关注专知公众号,获取人工智能的专业知识!

点击“阅读原文”,使用专知

展开全文
Top
微信扫码咨询专知VIP会员