19篇ICML2019论文摘录选读!

【导读】机器学习领域的国际顶级会议International Conference on Machine Learning (ICML)公布了2019年的论文评审结果,本年度ICML共收到3400篇左右的投稿,经过严格筛选,共有773篇论文被录用。专知整理一些公布的接受论文,欢迎查看!


1、Heterogeneous Model Reuse via Optimizing Multiparty Multiclass Margin

作者:吴西竹,周志华,柳松


2、Importance Sampling Policy Evaluation with an Estimated Behavior Policy

arxiv.org/abs/1806.01347 

作者:Josiah Hanna, Scott Niekum, Peter Stone


3、Imitating Latent Policies from Observation

https://arxiv.org/abs/1805.07914

Ashley D. Edwards, Himanshu Sahni, Yannick Schroecker, Charles L. Isbell


4、Using Pre-Training Can Improve Model Robustness and Uncertainty

arxiv.org/abs/1901.09960 

作者:Dan Hendrycks, Kimin Lee, Mantas Mazeika


5、Hyperbolic Disk Embeddings for Directed Acyclic Graphs

arxiv.org/abs/1902.04335 

作者:Ryota Suzuki, Ryusuke Takahama, Shun Onoda


6、Finding Options that Minimize Planning Time

arxiv.org/abs/1810.07311 

作者:Yuu Jinnai, David Abel, D Ellis Hershkowitz, Michael Littman, George Konidaris


7、Discovering Options for Exploration by Minimizing Cover Time

https://arxiv.org/abs/1903.00606 

作者:Yuu Jinnai, Jee Won Park, David Abel, George Konidaris


8. Making Convolutional Networks Shift-Invariant Again

    作者:Richard Zhang

  地址:https://arxiv.org/abs/1904.11486


9、Extrapolating Beyond Suboptimal Demonstrations via Inverse Reinforcement Learning from Observations

arxiv.org/abs/1904.06387 

作者:Daniel S. Brown, Wonjoon Goo, Prabhat Nagarajan, Scott Niekum


10、Global Convergence of Block Coordinate Descent in Deep Learning

arxiv.org/abs/1803.00225 

作者:Jinshan Zeng, Tim Tsz-Kit Lau, Shaobo Lin, Yuan Yao


11、Learn-to-Grow for addressing Catastrophic Forgetting in Continual Machine Learning

https://arxiv.org/abs/1904.00310

作者:Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, Caiming Xiong


12、Unsupervised label noise modeling and loss correction

https://arxiv.org/abs/1904.11238

作者:Eric Arazo, Diego Ortego, Paul Albert, Noel E. O'Connor, Kevin McGuinness


13、Bayesian leave-one-out cross-validation for large data  

https://arxiv.org/abs/1904.10679

作者:Måns Magnusson, Michael Riis Andersen, Johan Jonasson, Aki Vehtari


 14、Neural Collaborative Subspace Clustering

https://arxiv.org/abs/1904.10596

作者:Tong ZhangPan JiMehrtash HarandiWenbing HuangHongdong Li


15、Imitation Learning from Imperfect Demonstration

https://arxiv.org/abs/1901.09387 

作者:Yueh-Hua Wu, Nontawat Charoenphakdee, Han Bao, Voot Tangkaratt, Masashi Sugiyama



16. Approximation and Non-parametric Estimation of ResNet-type Convolutional Neural Networks

arxiv.org/abs/1903.10047 

作者:Kenta Oono, Taiji Suzuki



17. Self-Attention Generative Adversarial Networks

arxiv.org/abs/1805.08318 

作者:Han Zhang, Ian Goodfellow, Dimitris Metaxas, Augustus Odena



18、TensorFuzz: Debugging Neural Networks with Coverage-Guided Fuzzing

https://arxiv.org/abs/1807.10875 

作者:Augustus Odena, Ian Goodfellow


19、Imperceptible, Robust, and Targeted Adversarial Examples for Automatic Speech Recognition

https://arxiv.org/abs/1903.10346 

作者:Yao Qin, Nicholas Carlini, Ian Goodfellow, Garrison Cottrell, Colin Raffel


-END-

专 · 知

专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎登录www.zhuanzhi.ai,注册登录专知,获取更多AI知识资料!

欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程视频资料和与专家交流咨询!

请加专知小助手微信(扫一扫如下二维码添加),加入专知人工智能主题群,咨询技术商务合作~

专知《深度学习:算法到实战》课程全部完成!530+位同学在学习,现在报名,限时优惠!网易云课堂人工智能畅销榜首位!

点击“阅读原文”,了解报名专知《深度学习:算法到实战》课程

展开全文
Top
微信扫码咨询专知VIP会员