【导读】机器学习领域的国际顶级会议International Conference on Machine Learning (ICML)公布了2019年的论文评审结果,本年度ICML共收到3400篇左右的投稿,经过严格筛选,共有773篇论文被录用。专知整理一些公布的接受论文,欢迎查看!
1、Heterogeneous Model Reuse via Optimizing Multiparty Multiclass Margin
作者:吴西竹,周志华,柳松
2、Importance Sampling Policy Evaluation with an Estimated Behavior Policy
arxiv.org/abs/1806.01347
作者:Josiah Hanna, Scott Niekum, Peter Stone
3、Imitating Latent Policies from Observation
https://arxiv.org/abs/1805.07914
Ashley D. Edwards, Himanshu Sahni, Yannick Schroecker, Charles L. Isbell
4、Using Pre-Training Can Improve Model Robustness and Uncertainty
arxiv.org/abs/1901.09960
作者:Dan Hendrycks, Kimin Lee, Mantas Mazeika
5、Hyperbolic Disk Embeddings for Directed Acyclic Graphs
arxiv.org/abs/1902.04335
作者:Ryota Suzuki, Ryusuke Takahama, Shun Onoda
6、Finding Options that Minimize Planning Time
arxiv.org/abs/1810.07311
作者:Yuu Jinnai, David Abel, D Ellis Hershkowitz, Michael Littman, George Konidaris
7、Discovering Options for Exploration by Minimizing Cover Time
https://arxiv.org/abs/1903.00606
作者:Yuu Jinnai, Jee Won Park, David Abel, George Konidaris
8. Making Convolutional Networks Shift-Invariant Again
作者:Richard Zhang
地址:https://arxiv.org/abs/1904.11486
9、Extrapolating Beyond Suboptimal Demonstrations via Inverse Reinforcement Learning from Observations
arxiv.org/abs/1904.06387
作者:Daniel S. Brown, Wonjoon Goo, Prabhat Nagarajan, Scott Niekum
10、Global Convergence of Block Coordinate Descent in Deep Learning
arxiv.org/abs/1803.00225
作者:Jinshan Zeng, Tim Tsz-Kit Lau, Shaobo Lin, Yuan Yao
11、Learn-to-Grow for addressing Catastrophic Forgetting in Continual Machine Learning
https://arxiv.org/abs/1904.00310
作者:Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, Caiming Xiong
12、Unsupervised label noise modeling and loss correction
https://arxiv.org/abs/1904.11238
作者:Eric Arazo, Diego Ortego, Paul Albert, Noel E. O'Connor, Kevin McGuinness
13、Bayesian leave-one-out cross-validation for large data
https://arxiv.org/abs/1904.10679
作者:Måns Magnusson, Michael Riis Andersen, Johan Jonasson, Aki Vehtari
14、Neural Collaborative Subspace Clustering
https://arxiv.org/abs/1904.10596
作者:Tong Zhang, Pan Ji, Mehrtash Harandi, Wenbing Huang, Hongdong Li
15、Imitation Learning from Imperfect Demonstration
https://arxiv.org/abs/1901.09387
作者:Yueh-Hua Wu, Nontawat Charoenphakdee, Han Bao, Voot Tangkaratt, Masashi Sugiyama
16. Approximation and Non-parametric Estimation of ResNet-type Convolutional Neural Networks
arxiv.org/abs/1903.10047
作者:Kenta Oono, Taiji Suzuki
17. Self-Attention Generative Adversarial Networks
arxiv.org/abs/1805.08318
作者:Han Zhang, Ian Goodfellow, Dimitris Metaxas, Augustus Odena
18、TensorFuzz: Debugging Neural Networks with Coverage-Guided Fuzzing
https://arxiv.org/abs/1807.10875
作者:Augustus Odena, Ian Goodfellow
19、Imperceptible, Robust, and Targeted Adversarial Examples for Automatic Speech Recognition
https://arxiv.org/abs/1903.10346
作者:Yao Qin, Nicholas Carlini, Ian Goodfellow, Garrison Cottrell, Colin Raffel
-END-
专 · 知
专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎登录www.zhuanzhi.ai,注册登录专知,获取更多AI知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程视频资料和与专家交流咨询!
请加专知小助手微信(扫一扫如下二维码添加),加入专知人工智能主题群,咨询技术商务合作~
专知《深度学习:算法到实战》课程全部完成!530+位同学在学习,现在报名,限时优惠!网易云课堂人工智能畅销榜首位!
点击“阅读原文”,了解报名专知《深度学习:算法到实战》课程