【资源】15个在线机器学习课程和教程

本文推荐15个机器学习课程和行业领先大牛的教程。其中大多数课程都是免费的,无需注册即可自学。内容包括决策树、朴素贝叶斯、逻辑回归、神经网络和深度学习、估计、贝叶斯学习、支持向量机和核方法(kernel)、聚类、无监督学习、提升算法(boosting)、强化学习和学习理论(learning theory)。


如果你需要回顾一下机器学习的背景知识,卡内基梅隆大学(Carnegie Mellon University)的Geoff Gordon教授的机器学习系列课程非常值得学习:机器学习的数学背景(Math Background for Machine Learning)

https://www.youtube.com/playlist?list=PL7y-1rk2cCsAqRtWoZ95z-GMcecVG5mzA 。

 

神经网络与机器学习简介(Introduction to Neural Networks and Machine Learning)

Geoffrey E. Hinton. University of Toronto. 2014

https://sky2learn.com/preview-wjP3pHdRJvFJK-nXdR1_kg

 

  • 机器学习(Machine Learning)

    Ruslan Salakhutdinov. Carnegie Mellon University, Director of AI Research at Apple. This course was taught at University of Toronto. 2015

    https://sky2learn.com/preview-dFtevIcJ3Af6CputGezgDA


  • 机器学习和模式识别(Machine Learning and Pattern Recognition)

    Yann LeCun. New York University, Director of AI Research at Facebook 2010

    https://sky2learn.com/preview-QiHThsEgAVEy4-odxkX1Ng


  • 从数据中学习(Learning from Data)

    Yaser S. Abu-Mostafa. California Institute of Technology. 2012

    https://sky2learn.com/preview-4sLonxjTQNRtKIrJ6xCkAg


  • 机器学习(Machine Learning)

    Kilian Weinberger. Cornell. 2017

    Mobile friendly lecture notes

    https://sky2learn.com/preview-Pq1N3D-lXlencKqqPYxANQ


  • 机器学习(Machine Learning)

    Andrew Ng. Stanford University via Coursera. Founder of Coursera. 2017

    starts on 2017/12/25

    https://sky2learn.com/preview-7W3n96KtqMr-3LLpsFuM2Q/


  • 面向机器学习的神经网络(Neural Networks for Machine Learning)

    Geoffrey Hinton. University of Toronto via Coursera. 2017

    The newer version of his 2014 course, starts on 2017/12/25

    https://sky2learn.com/preview-E9cbKYvP0WjpeNEGBkiUOA/


  • 机器学习和自适应智能(Machine Learning and Adaptive Intelligence)

    Neil Lawrence. University of Sheffield, Director of Machine Learning at Amazon. 2015

    https://sky2learn.com/preview-Qo6n50aBrr1_Ku_Yd8XkJw/


  • 神经网络和机器学习的介绍(Intro to Neural Networks and Machine Learning)

    Roger Grosse. University of Toronto. 2017

    https://sky2learn.com/preview-6dHXgYG3W_OCmPgPy3akGg


  • 信息论,模式识别和神经网络(Information Theory, Pattern Recognition, and Neural Networks)

    David MacKay. University of Cambridge via Videolectures.

    https://sky2learn.com/preview-waGKXtKmz8A9MZZjkbnXMw/


  • 机器学习(Machine Learning)

    Tom Mitchell and Maria-Florina Balcan. Carnegie Mellon University. 2015

    https://sky2learn.com/preview-F6w_2HD9j2tvUNfxE1RrNA/


  • 机器学习(Machine Learning)

    Michael Littman, Charles Isbell, and Pushkar Kolhe. Georgia Institute of Technology via Udacity. 2017

    https://sky2learn.com/preview-AtFhs-yWq9fPxaDgSe_YcA


  • 机器学习简介(Introduction to Machine Learning)

    Sargur Srihari. University at Buffalo. 2017

    https://sky2learn.com/preview-_wrGYyY4Rt0ExRCGN7Oytw/


  • 机器学习——纳米级介绍(Machine Learning - Nano Degree)

    Arpan Chakraborty, David Joyner, Luis Serrano, Sebastian Thrun, Vincent Vanhoucke, and Katie Malone. Udacity. 2017

    https://sky2learn.com/preview-XjNZGyJsqwXORImXYdsURQ/


  • 机器学习教程(Tutorial: Machine Learning)

    Andrew Moore. Dean of School of Computer Science at Carnegie Mellon University.

    https://sky2learn.com/preview-XjNZGyJsqwXORImXYdsURQ/


参考链接:

http://bigdata.evget.com/post/2183.html


-END-



专 · 知



人工智能领域主题知识资料查看获取【专知荟萃】人工智能领域25个主题知识资料全集(入门/进阶/论文/综述/视频/专家等)

同时欢迎各位用户进行专知投稿,详情请点击

诚邀】专知诚挚邀请各位专业者加入AI创作者计划了解使用专知!

请PC登录www.zhuanzhi.ai或者点击阅读原文,注册登录专知,获取更多AI知识资料

请扫一扫如下二维码关注我们的公众号,获取人工智能的专业知识!

请加专知小助手微信(Rancho_Fang),加入专知主题人工智能群交流!

点击“阅读原文”,使用专知

展开全文
Top
微信扫码咨询专知VIP会员