【资源】2019年计算机视觉综述论文汇聚

【导读】本文整理了2019年计算机视觉方面的综述论文,包含目标检测图像分割(含语义/实例分割)目标跟踪医学图像分割显著性目标检测行为识别深度估计等。可以使读者对相关领域有一个系统的了解。很适合初学者以及相关领域的研究人员。

目标检测

01


1. Imbalance Problems in Object Detection: A Reviewintro: under review at TPAMI

arXiv: https://arxiv.org/abs/1909.00169

2. Recent Advances in Deep Learning for Object Detectionintro: From 2013 (OverFeat) to 2019 (DetNAS)

arXiv: https://arxiv.org/abs/1908.03673

3. A Survey of Deep Learning-based Object Detectionintro:From Fast R-CNN to NAS-FPN

arXiv: https://arxiv.org/abs/1907.09408

4. Object Detection in 20 Years: A Surveyintro:This work has been submitted to the IEEE TPAMI for possible publication

arXiv: https://arxiv.org/abs/1905.05055

5. 目标检测更多论文详见:https://github.com/amusi/awesome-object-detection

图像分割

02


1. Deep Semantic Segmentation of Natural and Medical Images: A Reviewintro

从 FCN(2014) 到 Auto-DeepLab(2019),本综述共含179篇语义分割和医学图像分割参考文献

arXiv: https://arxiv.org/abs/1910.07655

2. Understanding Deep Learning Techniques for Image Segmentationintro

本综述介绍了从2013年到2019年,主流的30多种分割算法(含语义/实例分割),50多种数据集,共计224篇参考文献

arXiv: https://arxiv.org/abs/1907.06119

目标跟踪

03


1. A Review of Visual Trackers and Analysis of its Application to Mobile Robotintro

本目标跟踪综述共含185篇参考文献!从传统方法到最新的深度学习网络

arXiv: https://arxiv.org/abs/1910.09761

2. Deep Learning in Video Multi-Object Tracking: A Surveyintro

38页目标跟踪综述,含30多种主流算法,共计174篇参考文献

arXiv: https://arxiv.org/abs/1907.12740

超分辨率

04


1. A Deep Journey into Super-resolution: A survey

arXiv: https://arxiv.org/abs/1904.07523

2. Deep Learning for Image Super-resolution: A Survey

arXiv: https://arxiv.org/abs/1902.06068

医学图像分割

05


1. Deep learning for cardiac image segmentation: A reviewintro

本医学图像分割综述从FCN(2014)到Dense U-net(2019),超过250篇的参考文献(论文中光画图的工作量就超级大)

arXiv: https://arxiv.org/abs/1911.03723

2. Machine Learning Techniques for Biomedical Image Segmentation: An Overview of Technical Aspects and Introduction to State-of-Art Applications

arXiv: https://arxiv.org/abs/1911.02521

显著性目标检测

06


1. Salient Object Detection in the Deep Learning Era: An In-Depth Survey

arXiv: https://arxiv.org/abs/1904.09146

github: https://github.com/wenguanwang/SODsurvey

行为识别

07


1. Spatio-temporal Action Recognition: A Survey

arXiv: https://arxiv.org/abs/1901.09403

深度估计

08


1. Monocular Depth Estimation: A Survey

arXiv: https://arxiv.org/abs/1901.09402



地址连接:

https://github.com/FranxYao/Deep-Generative-Models-for-Natural-Language-Processing


附注:更多计算机视觉资料请上,专知网站查看,
https://www.zhuanzhi.ai/topic/2001319504370995/

-END-
专 · 知


专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程视频资料和与专家交流咨询
请加专知小助手微信(扫一扫如下二维码添加),获取专知VIP会员码,加入专知人工智能主题群,咨询技术商务合作~
点击“阅读原文”,了解注册成为专知会员,查看5000+AI主题知识资料
展开全文
Top
微信扫码咨询专知VIP会员