Github 十个小时狂揽千赞:机器学习完整路线图

【导读】昨天GitHub上一份机器学习完整路线引起了广泛关注,在短短的十个小时里已经收获了一千多个点赞。刚博士毕业的在一家AI创业公司工作的Giacomo回顾了自己三四年间学习机器学习的心路历程,毫无保留的分享出自己收藏的各种学习资源,工程,工具,awosome集合,教程以及各种实践经验。


GitHub链接:

https://github.com/clone95/Machine-Learning-Study-Path-March-2019/tree/master/Career%20Paths/Machine%20Learning%20Engineer%20Career%20Path


整个机器学习完整路线图被分为四个部分:


预备知识

• Python

• Jupyter Notebook

• The Math you need

• The Machine Learning landscape


 基于Scikit-Learn的机器学习

• Why Scikit-Learn?

• End-to-End Machine Learning project

• Linear Regression

• Classification

• Training models

• Support Vector Machines

• Decision Trees

• Ensemble Learning and Random Forest

• Unsupervised Learning --- new

• Wrapping up and looking forward


基于TensorFlow的机器学习

• Why TensorFlow?

• Up and Running with TensorFlow

• ANN - Artificial Neural Networks

• CNN - Convolutional Neural Networks

• RNN - Recurrent Neural Networks

• Training Networks: Best practices

• AutoEncoders

• Reinforcement Learning

• Next steps


实用工具

• Machine Learning Projects

• Data Science Tools

• Blogs / Youtube Channels / Websites worth taking a look!


该项目旨在为机器学习入门提供完整而有机的学习途径。您将理解TensorFlow和Scikit-Learn这两种理论,并能够通过实际项目将其应用于实践中。掌握它们不需要任何先前的知识,但对编程和高中数学有一定的基础是理解和实现机器学习概念所必需的。我强烈建议购买这本书:OreillY的“Hands-On Machine Learning with Scikit-Learn and TensorFlow”,它激发了我的灵感并推动了下面列出的大部分内容的组织和层次结构。


除此之外,这里列出的所有内容都是开源和免费的,其中大部分来自世界知名大学和开源协会。并且详细记录了各个部分的网址链接。


专知把作者分享的内容保存成PDF文档,供感兴趣的专知用户学习收藏,

请关注专知公众号(点击上方蓝色专知关注

  • 后台回复“机器学习完整路线图” 就可以获取机器学习完整路线图的PDF的下载链接~ 



-END-

专 · 知

专知《深度学习:算法到实战》课程全部完成!510+位同学在学习,现在报名,限时优惠!网易云课堂人工智能畅销榜首位!

欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程视频资料和与专家交流咨询!

请加专知小助手微信(扫一扫如下二维码添加),加入专知人工智能主题群,咨询《深度学习:算法到实战》课程,咨询技术商务合作~

请PC登录www.zhuanzhi.ai或者点击阅读原文,注册登录专知,获取更多AI知识资料!

点击“阅读原文”,了解报名专知《深度学习:算法到实战》课程

展开全文
Top
微信扫码咨询专知VIP会员