【干货】监督学习知识手册大全|维基百科书,附103页pdf下载

【导读】监督学习是指利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习,其同样是基于示例输入-输出数据对,在输入和输出数据之间建立数学函数的机器学习任务,而该数学函数来源于对有标签训练数据集的学习过程。函数的输出可以是一个连续的值(称为回归分析),或是预测一个分类标签(称作分类)。一个监督式学习者的任务在观察完一些事先标记过的训练范例(输入和预期输出)后,去预测这个函数对任何可能出现的输入的输出。要达到此目的,学习者必须以"合理"(见归纳偏向)的方式从现有的资料中一般化到非观察到的情况。在人类和动物感知中,则通常被称为概念学习(concept learning)。

主要内容:

  • 监督学习

  • 统计分类

  • 回归分析

  • 感知器

  • 线性回归

  • 逻辑回归

  • 支持向量机

  • 朴素贝叶斯分类器

  • 决策树学习

  • 人工神经网络

  • 集成学习

  • k近邻算法




便捷下载:关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“SWB” 获取【干货】监督学习知识手册大全|维基百科书pdf链接下载索引~



-END-
专 · 知


专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程视频资料和与专家交流咨询
请加专知小助手微信(扫一扫如下二维码添加), 获取专知VIP会员码 加入专知人工智能主题群,咨询技术商务合作~
点击“阅读原文”,了解注册成为专知会员,查看5000+AI主题知识资料
展开全文
Top
微信扫码咨询专知VIP会员