【专知荟萃04】自动问答QA知识资料全集(入门/进阶/论文/代码/数据/综述/专家等)(附pdf下载)

点击上方“专知”关注获取更多AI知识!


【导读】主题荟萃知识是专知的核心功能之一,为用户提供AI领域系统性的知识学习服务。主题荟萃为用户提供全网关于该主题的精华(Awesome)知识资料收录整理,使得AI从业者便捷学习和解决工作问题!在专知人工智能主题知识树基础上,主题荟萃由专业人工编辑和算法工具辅助协作完成,并保持动态更新!另外欢迎对此创作主题荟萃感兴趣的同学,请加入我们专知AI创作者计划,共创共赢! 今天专知为大家呈送第四篇专知主题荟萃-自动问答QA知识资料全集荟萃 (入门/进阶/论文/代码/数据/专家等),请大家查看!专知访问www.zhuanzhi.ai,  或关注微信公众号后台回复" 专知"进入专知,搜索主题“深度学习”查看。欢迎转发分享!此外,我们也提供该文pdf下载链接,请文章末尾查看


了解专知,专知,一个新的认知方式!


  • 自动问答 Question Answering 专知荟萃

    • 入门学习

    • 进阶文章

    • Tutorial

    • 综述

    • 视频教程

    • 代码

    • datasets

    • 领域专家


自动问答 Question Answering 专知荟萃

入门学习

  1. 自动问答系统的类别 冯志伟

    • [http://blog.sina.com.cn/s/blog_72d083c70102du8m.html\]

  2. 基于深度学习的智能问答 周小强 陈清财 曾华军

    • [https://yq.aliyun.com/articles/58745]

  3. 基于知识图谱的电影自动问答系统(一)知识的获取与存储 (二)自动问答实现

    • [http://www.voidcn.com/article/p-hwhmeuje-ym.html]

    • [http://www.voidcn.com/article/p-wylzjird-ym.html]

  4. 客服系统机器人产品设计详解——智能回答

    • [http://www.chanpin100.com/article/105410]

  5. 聊天机器人与自动问答技术

    • [http://blog.csdn.net/heiyeshuwu/article/details/42965693]

  6. 揭开知识库问答KB-QA的面纱

    • [https://zhuanlan.zhihu.com/p/25735572]

  7. Question answering with TensorFlow

    • [https://www.oreilly.com/ideas/question-answering-with-tensorflow]


进阶文章

  1. Towards AI-Complete Question Answering: A set of prerequisite toy tasks

    • [http://arxiv.org/pdf/1502.05698v10.pdf]

  2. Large Scale simple question answering with Memory Networks
    - [https://arxiv.org/pdf/1506.02075v1.pdf]

  3. Ask Me Anything: Dynamic Memory Networks for Natural Language Processing

    • [http://arxiv.org/pdf/1506.07285v5.pdf]

  4. Key-Value Memory Networks for directly understanding documents
    - [https://arxiv.org/pdf/1606.03126v1.pdf]

  5. Semantic Parsing via Staged Query Graph Generation: Question Answering with Knowledge Base

    • [https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/ACL15-STAGG.pdf]

  6. Value of Semantic Parse Labeling for KBQA

    • [https://www.microsoft.com/en-us/research/wp-content/uploads/2016/08/acl2016-webqsp.pdf]

  7. Question Answering with Subgraph Embeddings

    • [https://arxiv.org/pdf/1406.3676v3.pdf]

  8. Open Question Answering with Weakly Supervised Embedding Models
    - [https://arxiv.org/pdf/1404.4326.pdf]

  9. Learning End-to-End Goal-Oriented dialog

    • [https://arxiv.org/pdf/1605.07683v2.pdf]

  10. End-to-End Memory Networks with Knowledge Carryover for Multi-Turn Spoken Language Understanding

    • [https://www.microsoft.com/en-us/research/wp-content/uploads/2016/06/IS16_ContextualSLU.pdf]

  11. Question Answering over Knowledge Base With Neural Attention Combining Global Knowledge Information

    • [https://arxiv.org/pdf/1606.00979v1.pdf]

  12. Compositional Learning of Embeddings for Relation Paths in Knowledge Bases and Texts

    • [https://www.microsoft.com/en-us/research/wp-content/uploads/2016/06/acl2016relationpaths-1.pdf]

  13. Neural Machine Translation by jointly learning to align and translate
    - [https://arxiv.org/pdf/1409.0473v7.pdf]

  14. Recurrent Neural Network Grammar

    • [https://arxiv.org/pdf/1602.07776v4.pdf]

  15. Neural Turing Machines

    • [https://www.youtube.com/watch?v=_H0i0IhEO2g_)]

  16. Teaching machines to read and comprehend

    • [https://arxiv.org/pdf/1506.03340.pdf]

  17. Applying Deep Learning to answer selection: A study and an open task - [https://arxiv.org/pdf/1508.01585v2.pdf]

  18. Reasoning with Neural Tensor Networks

    • [https://papers.nips.cc/paper/5028-reasoning-with-neural-tensor-networks-for-knowledge-base-completion.pdf]

  19. Hybrid computing using a neural network with dynamic external memory

    • [http://www.nature.com/nature/journal/v538/n7626/full/nature20101.html)]

  20. Gaussian Attention Model and its Application to Knowledge Base Embedding and Question Answering

    • [https://arxiv.org/pdf/1611.02266.pdf]

  21. Gated Graph Sequence Neural Networks

    • [https://arxiv.org/abs/1511.05493]

  22. Sequence to Sequence Learning With Neural Networks

    • [https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf]

  23. Neural Conversation Model

    • [https://arxiv.org/pdf/1506.05869v1.pdf]

  24. Query Reduction Networks For Question Answering

    • [https://arxiv.org/pdf/1606.04582.pdf]

  25. Conditional Focused Neural Question Answering with Large-scale Knowledge Bases

    • [https://arxiv.org/pdf/1606.01994.pdf]

  26. Efficiently Answering Technical Questions — A Knowledge Graph Approach

    • [http://wangzhongyuan.com/en/papers/Technical_Questions_Answering.pdf]

  27. An End-to-End Model for Question Answering over Knowledge Base with Cross-Attention Combining Global Knowledge

    • [http://www.nlpr.ia.ac.cn/cip/~liukang/liukangPageFile/ACL2017-Hao.pdf]

  28. Question Generation via Overgenerating Transformations and Ranking (Technical report)

    • [https://www.lti.cs.cmu.edu/sites/default/files/cmulti09013.pdf]

  29. Automation of question generation from sentences

    • [http://www.sadidhasan.com/sadid-QG.pdf]

  30. Good question!statistical ranking for question generation

    • [https://homes.cs.washington.edu/~nasmith/papers/heilman+smith.naacl10.pdf]

  31. Question generation from paragraphs at upenn: Qgstec system description

    • [http://www.aclweb.org/anthology/I11-1104]

  32. Automatically generating questions from queries for community-based question answering

    • [http://www.aclweb.org/anthology/I11-1104]

  33. How to Generate Cloze Questions from Definitions: A Syntactic Approach - [https://www.cs.cmu.edu/~listen/pdfs/gates-2011-aaai-qg.pdf]

  34. Generating natural language questions to support learning on-line
    - [http://www.aclweb.org/anthology/W13-2114]

  35. Deep questions without deep understanding
    - [http://www.aclweb.org/anthology/P15-1086]

  36. Semi-supervised qa with generative domain-adaptive nets

    • [https://pdfs.semanticscholar.org/e8a0/536dc080acd2ca83502dddd0d511ef3fbd8c.pdf]

  37. Leveraging multiple views of text for automatic question generation

    • [http://link.springer.com/chapter/10.1007/978-3-319-19773-9_26]

  38. Revup: Automatic gap-fill question generation from educational texts

    • [http://www.aclweb.org/anthology/W15-0618]

  39. Towards topic-to-question generatio

    • [http://www.mitpressjournals.org/doi/abs/10.1162/COLI_a_00206]

  40. Ranking automatically generated questions using common human queries

    • [http://www.aclweb.org/old_anthology/W/W16/W16-66.pdf#page=233]

  41. Generating quiz questions from knowledge graphs

    • [https://dl.acm.org/citation.cfm?doid=2740908.2742722]

  42. Generating Factoid Questions With Recurrent Neural Networks: The 30M Factoid Question-Answer Corpus

    • [http://arxiv.org/pdf/1603.06807v1.pdf]

  43. Knowledge Questions from Knowledge Graphs

    • [https://arxiv.org/abs/1610.09935]

  44. Machine Comprehension by Text-to-Text Neural Question Generation
    - [http://aclweb.org/anthology/W17-2603]

  45. Question Generation from a Knowledge Base with Web Exploration
    - [https://arxiv.org/pdf/1610.03807.pdf]

  46. On Generating Characteristic-rich Question Sets for QA Evaluation
    - [http://www.aclweb.org/anthology/D/D16/D16-1054.pdf]

  47. Neural Question Generation from Text: A Preliminary Study

    • [https://arxiv.org/pdf/1704.01792.pdf]


Tutorial

  1. Question Answering Become Main Theme of IR Research? 李航 今日头条

    • [http://www.hangli-hl.com/uploads/3/4/4/6/34465961/airs_2016_question_answering.pdf\]

    • [http://lab.toutiao.com/index.php/2017/03/02/huaweilihangwill-question-answering-become-main-theme-of-research-in-information-retrieval.html]

  2. 深度问答技术 中科院自动化所 赵军老师

    • [链接:http://pan.baidu.com/s/1qYJV1Ti 密码:99c4]

  3. 深度学习与智能问答   CCL 2016 Tutorial 刘康 冯岩松

    1. 基于传统符号表示的知识库问答

    2. 基于深度学习的知识库问答

    3. 基于深度学习的对话系统

    4. 基于深度学习的阅读 解

    5. [https://pan.baidu.com/s/1bpDAf8r]

    6. [http://www.cips-cl.org/static/CCL2016/tutorialsT2B.html]

  4. 基于知识的智能问答技术 冯岩松 2017. [http://cips-upload.bj.bcebos.com/2017/ssatt2017/ATT2017-QAI.pdf]

  5. 自动问答、聊天机器人与自然语言理解 中国计算机学会《学科前沿讲习班》 by 严睿 段楠 段楠 熊德意 高剑峰 谢幸 http://tcci.ccf.org.cn/conference/2017/adlnotice.php


综述

  1. 《Speeh and Language Processing》Chapter 28 Question Answering

    • [https://web.stanford.edu/~jurafsky/slp3/28.pdf\]

  2. A Survey of Text Question Answering Techniques. Poonam Gupta,Vishal Gupta

    • [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.258.7801&rep=rep1&type=pdf]

  3. Question Answering Systems: Survey and Trends

    • [http://www.sciencedirect.com/science/article/pii/S1877050915034663]

  4. The Question Answering Systems: A Survey

    • [https://www.researchgate.net/publication/311425566_The_Question_Answering_Systems_A_Survey\]

  5. 面向知识自动化的自动问答研究进展
    [http://www.aas.net.cn/CN/10.16383/j.aas.2017.c160667]

  6. 自动问答综述 2002年 by 郑实福,刘挺,秦兵,李生 [http://jcip.cipsc.org.cn/CN/abstract/abstract1282.shtml]

  7. 基于 Web 的问答系统综述 2017 李舟军李水华 [http://www.jsjkx.com/jsjkx/ch/reader/create_pdf.aspx?file_no=20170601&flag=&journal_id=jsjkx&year_id=2017\]


视频教程

  1. 深度学习在自动问答系统中的应用 李成华

    • [http://www.infoq.com/cn/presentations/deep-learing-on-automatic-question-answering-system]


代码

  1. MemNN Impl Matlab

    • [https://github.com/facebook/MemNN]

  2. Key Value MemNN

    • [https://github.com/siyuanzhao/key-value-memory-networks]

  3. Quepy

    • [https://github.com/machinalis/quepy]

  4. NLQuery

    • [https://github.com/ayoungprogrammer/nlquery]

  5. ParlAI

    • [https://github.com/facebookresearch/ParlAI]

  6. flask-chatterbot

    • [https://github.com/chamkank/flask-chatterbot]

  7. Learning to Rank short text pairs with CNN SIGIR 2015

    • [https://github.com/shashankg7/Keras-CNN-QA]

  8. TextKBQA

    • [https://github.com/rajarshd/TextKBQA]

  9. BiAttnFlow

    • [https://github.com/allenai/bi-att-flow]


Datasets

  1. SQuAD The Stanford Question Answering Dataset

    • [https://rajpurkar.github.io/SQuAD-explorer/]

  2. CNN QA Task (Teaching Machines to Read & Comprehend)

    • [https://github.com/deepmind/rc-data/]

  3. WebQuestions

    • [http://nlp.stanford.edu/software/sempre/]

  4. Simple Questions

    • [https://research.facebook.com/research/babi]

  5. Movie QA

    • [https://research.facebook.com/research/babi/]

  6. WebQuestionsSP

    • [https://www.microsoft.com/en-us/download/details.aspx?id=52763]

  7. WikiQA

    • [https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/YangYihMeek_EMNLP-15_WikiQA.pdf]

  8. Kaggle AllenAI Challenge

    • [https://www.kaggle.com/c/the-allen-ai-science-challenge]

  9. MC Test, Machine Comprehension Test Microsoft 2013

    • [http://research.microsoft.com/en-us/um/redmond/projects/mctest/]

  10. MSR Sentence Completion Challenge

    • [https://www.microsoft.com/en-us/research/project/msr-sentence-completion-challenge/]

  11. Dialog State Tracking Challenge

    • [http://camdial.org/~mh521/dstc/]

  12. QA dataset featured in Teaching Machines to Read and Comprehend

    • [https://github.com/deepmind/rc-data/]

  13. WebNav

    • [https://github.com/nyu-dl/WebNav/blob/master/README.md]

  14. Stanford Question Answering Dataset

    • [https://rajpurkar.github.io/SQuAD-explorer/]

  15. FB15K Knowledge Base

    • [https://www.microsoft.com/en-us/download/details.aspx?id=52312]

  16. WikiQA

    • [http://aka.ms/WikiQA)]

  17. Quora Duplicate Questions Dataset

    • [https://data.quora.com/)]

  18. Query Reformulator Dataset Jeopardy etc

    • [https://github.com/nyu-dl/QueryReformulator)]

  19. Quiz Bowl Questions

    • [https://www.cs.colorado.edu/~jbg/projects/IIS-1320538.html#Datasets]

  20. WebQA-Chinese

    • [http://idl.baidu.com/WebQA.html]

  21. Chat corpus

    • [https://github.com/Marsan-Ma/chat_corpus]

  22. DeepMind Q&A Dataset - [http://cs.nyu.edu/~kcho/DMQA/]

  23. WebQuestions - [https://worksheets.codalab.org/worksheets/0xba659fe363cb46e7a505c5b6a774dc8a/#]

  24. WebQA

    • http://idl.baidu.com/WebQA.html

  25. GraphQuestions

    • https://github.com/ysu1989/GraphQuestions


领域专家

  1. 刘康博士,中科院自动化所模式识别国家重点实验室副研究员,中国中文信息学会青年工作委员会执行委员。研究领域包括信息抽取、网络挖掘、问答系统等,同时也涉及模式识别与机器学习方面的基础研究。在自然语言处理、知识工程等领域国际重要会议和期刊发表论文三十余篇(如TKDE、ACL、IJCAI、EMNLP、COLING、CIKM等),曾获KDD CUP 2011 Track2 全球亚军,COLING 2014最佳论文奖,首届“CCF-腾讯犀牛鸟基金卓越奖”、2014年度中国中文信息学会“钱伟长中文信息处理科学技术奖-汉王青年创新一等奖”、2015 Google Focused Research Award等。       - 个人主页:http://www.nlpr.ia.ac.cn/cip/~liukang/index.html

  2.  冯岩松博士,北京大学计算机科学与技术研究所讲师。2011年毕业于英国爱丁堡大学,获得信息科学博士学位。主要研究方向包括自然语言处理、信息抽取以及机器学习在自然语言处理中的应用;已连续三年在面向结构化知识库的知识问答评测QALD-4, 5, 6中获得第一名;相关工作已发表在TPAMI、ACL、EMNLP等主流期刊与会议上。同时,作为项目负责人或课题骨干已承担多项国家自然科学基金及科技部863计划项目。分别在 2014 和 2015 年获得 IBM Faculty Award。       - 个人主页:https://sites.google.com/site/ysfeng/home 

  3. 严睿,北京大学研究员,前百度公司资深研发,华中师范大学与中央财经大学客座教授与校外导师。主持研发多个开放领域对话系统和服务类对话系统,发表高水平研究论文近50篇,担任多个学术会议(KDD, SIGIR, ACL, WWW, AAAI, CIKM, EMNLP等)的(高级)程序委员会委员及审稿人。

    • [http://59.108.48.5/wip/team/teacher/zh/yanrui]

  4. 段楠博士,微软亚洲研究院自然语言计算组主管研究员,长期从事自动问答、对话系统、语义理解、文本生成和网络搜索等自然语言处理研究。段楠博士的多项研究成果已经转化到微软重要人工智能产品中,例如必应搜索、微软小冰、Cortana语音助手等。自2015年起,段楠博士开始担任NLPCC开放领域中文自动问答评测的负责人。 [https://www.microsoft.com/en-us/research/people/nanduan/]

  5. 高剑峰是微软合伙人,微软Redmond总部人工智能部门的研究经理(Partner Research Manager)。他致力于深度学习在文本和图像处理方面的研发,领导机器阅读理解、问答、对话方面的研究和人工智能系统开发,以及微软新一代商务人工智能系统的研发。6. 谢幸博士于2001年7月加入微软亚洲研究院,现任社会计算组高级主任研究员,并任中国科技大学兼职博士生导师。他分别于1996年和2001年在中国科技大学获得计算机软件专业学士和博士学位。目前,他的团队在数据挖掘、社会计算和普适计算等领域展开创新性的研究。 [https://www.microsoft.com/en-us/research/people/jfgao/]

  6. 谢幸,微软亚洲研究院,任社会计算组高级主任研究员,并任中国科技大学兼职博士生导师。目前,他的团队在数据挖掘、社会计算和普适计算等领域展开创新性的研究。他是ACM、IEEE高级会员和计算机学会杰出会员,多次担任顶级国际会议程序委员会委员和领域主席等职位。 [https://www.microsoft.com/en-us/research/people/xingx/]

  7. Percy Liang 斯坦福大学计算机系助理教授、斯坦福人工智能实验室成员 [https://cs.stanford.edu/~pliang/\]

  8. 赵军 博导 中国科学院自动化研究所 http://people.ucas.ac.cn/~zhaojun

  9. 黄民烈 清华大学http://www.tsinghua.edu.cn/publish/cs/4616/2013/20131122151220708543803/20131122151220708543803_.html



汇总不全面,欢迎补全和提建议,敬请关注http://www.zhuanzhi.ai 和关注专知公众号,获取第一手AI相关知识


特注:

最新更新,请登录www.zhuanzhi.ai或者点击阅读原文,顶端搜索“ 自动问答” 主题,查看获得自动问答专知荟萃全集知识等资料!如下图所示~ 


此外,请关注专知公众号(扫一扫最下面专知二维码,或者点击上方蓝色专知),

  • 后台回复“QA” 或者“自动问答”就可以获取专知自动问答荟萃知识资料pdf下载链接~~


更多专知荟萃知识资料全集获取,请查看:

【专知荟萃01】深度学习知识资料大全集(入门/进阶/论文/代码/数据/综述/领域专家等)(附pdf下载)

【专知荟萃02】自然语言处理NLP知识资料大全集(入门/进阶/论文/Toolkit/数据/综述/专家等)(附pdf下载)

【专知荟萃03】知识图谱KG知识资料全集(入门/进阶/论文/代码/数据/综述/专家等)(附pdf下载)

【干货荟萃】机器学习&深度学习知识资料大全集(一)(论文/教程/代码/书籍/数据/课程等)

【GAN货】生成对抗网络知识资料全集(论文/代码/教程/视频/文章等)

【干货】Google GAN之父Ian Goodfellow ICCV2017演讲:解读生成对抗网络的原理与应用

【AlphaGoZero核心技术】深度强化学习知识资料全集(论文/代码/教程/视频/文章等)


欢迎转发到你的微信群和朋友圈,分享专业AI知识!

请扫描小助手,加入专知人工智能群,交流分享~

获取更多关于机器学习以及人工智能知识资料,请访问www.zhuanzhi.ai,  或者点击阅读原文,即可得到!

-END-

欢迎使用专知

专知,一个新的认知方式!目前聚焦在人工智能领域为AI从业者提供专业可信的知识分发服务, 包括主题定制、主题链路、搜索发现等服务,帮你又好又快找到所需知识。


使用方法>>访问www.zhuanzhi.ai, 或点击文章下方“阅读原文”即可访问专知


中国科学院自动化研究所专知团队

@2017 专知

专 · 知

关注我们的公众号,获取最新关于专知以及人工智能的资讯、技术、算法、深度干货等内容。扫一扫下方关注我们的微信公众号。


点击“阅读原文”,使用专知


展开全文
Top
微信扫码咨询专知VIP会员