Github作者shaoxiongji近日在其主页开源了一份关于知识图谱的论文和笔记合集。关于知识图谱的研究方向覆盖知识图谱表示、知识图谱补全、关系抽取、推荐系统、问答、对话生成、软件工程、动态知识图谱、知识推理、Zero-shot等其他相关应用。
作者 | shaoxiongji
整理 | Xiaowen
Github地址:
https://github.com/shaoxiongji/awesome-knowledge-graph
目录
① Knowledge Graph Embedding
② Knowledge Graph Completion
③ Relation Extraction
④ Recommendation System
⑤ Question Answering
⑥ Conversation Generation
⑦ Software Engineering
⑧ Other Applications
⑨ Dynamic Knowledge Graph
⑩ Knowledge Graph Reasoning
①① One/few-Shot and Zero-Shot
Variational Quantum Circuit Model for Knowledge Graph Embedding. Advanced Quantum Technologies 2019. Yunpu Ma, Volker Tresp, Liming Zhao, and Yuyi Wang. [Paper]
Interaction Embeddings for Prediction and Explanation in Knowledge Graphs. WSDM 2019. Wen Zhang, Bibek Paudel, Wei Zhang, Abraham Bernstein, Huajun Chen. [Paper]
Bootstrapping Entity Alignment with Knowledge Graph Embedding. IJCAI 2018. Zequn Sun, Wei Hu, Qingheng Zhang and Yuzhong Qu. [Paper] [Code] [Note]
Does William Shakespeare Really Write Hamlet? Knowledge Representation Learning with Confidence. AAAI 2018. Ruobing Xie, Zhiyuan Liu, Fen Lin, and Leyu Lin. [Paper] [Code]
Towards Understanding the Geometry of Knowledge Graph Embedding. ACL 2018. Chandrahas, Aditya Sharma and Partha Talukdar. [Paper] [Code] [Note]
Co-training Embedding of Knowledge Graphs and Entity Descriptions for Cross-lingual Entity Alignment. IJCAI 2018, Chen, Muhao, Yingtao Tian, Kai-Wei Chang, Steven Skiena, and Carlo Zaniolo. [Paper] [Note]
Enhanced Network Embeddings via Exploiting Edge Labels. CIKM 2018. Chen, Haochen, Xiaofei Sun, Yingtao Tian, Bryan Perozzi, Muhao Chen, and Steven Skiena. [Paper] [Note]
Scalable Rule Learning via Learning Representation. IJCAI 2018. Omran, Pouya Ghiasnezhad, Kewen Wang, and Zhe Wang.[Paper] [Note]
KBGAN: Adversarial Learning for Knowledge Graph Embeddings. NAACL 2018. Cai, Liwei, and William Yang Wang. [Paper] [Code] [Note]
Embedding Logical Queries on Knowledge Graphs. NIPS 2018. William L. Hamilton, Payal Bajaj, Marinka Zitnik, Dan Jurafsky, and Jure Leskovec. [Paper] [Code]
SimpIE Embedding for Link Prediction in Knowledge Graphs. NIPS 2018. Seyed Mehran Kazemi, David Poole. [Paper] [Code]
Differentiating Concepts and Instances for Knowledge Graph Embedding. EMNLP 2018. Xin Lv, Lei Hou, Juanzi Li, Zhiyuan Liu. [Paper] [Code]
Analogical inference for multi-relational embeddings. ICML 2017. Liu, Hanxiao and Wu, Yuexin and Yang, Yiming. [Paper] [Code]
On the equivalence of holographic and complex embeddings for link prediction. ACL 2017. Hayashi, Katsuhiko and Shimbo, Masashi. [Paper]
Holographic embeddings of knowledge graphs. AAAI 2016. Nickel, Maximilian and Rosasco, Lorenzo and Poggio, Tomaso. [Paper]
Complex embeddings for simple link prediction. ICML 2016. Trouillon, Théo and Welbl, Johannes and Riedel, Sebastian and Gaussier, Éric and Bouchard, Guillaume. [Paper] [Code]
Embedding entities and relations for learning and inference in knowledge bases. ICLR 2015. Yang, Bishan and Yih, Wen-tau and He, Xiaodong and Gao, Jianfeng and Deng, Li. [Paper]
Context-dependent knowledge graph embedding. EMNLP 2015. Luo, Yuanfei and Wang, Quan and Wang, Bin and Guo, Li. [Paper]
Compositional learning of embeddings for relation paths in knowledge base and text. ACL 2016. Toutanova, Kristina and Lin, Victoria and Yih, Wen-tau and Poon, Hoifung and Quirk, Chris. [Paper]
GAKE: graph aware knowledge embedding. COLING 2016. Feng, Jun and Huang, Minlie and Yang, Yang and Zhu, Xiaoyan. [Paper]
Relation extraction with matrix factorization and universal schemas. NAACL 2013. Riedel, Sebastian and Yao, Limin and McCallum, Andrew and Marlin, Benjamin M. [Paper]
A latent factor model for highly multi-relational data. NIPS 2012. Jenatton, Rodolphe and Roux, Nicolas L and Bordes, Antoine and Obozinski, Guillaume R. [Paper]
Factorizing YAGO: scalable machine learning for linked data. ICML 2012. Nickel, Maximilian and Tresp, Volker and Kriegel, Hans-Peter. [Paper]
A Three-Way Model for Collective Learning on Multi-Relational Data. WWW 2011. Nickel, Maximilian and Tresp, Volker and Kriegel, Hans-Peter. [Paper]
Modelling relational data using bayesian clustered tensor factorization. NIPS 2009. Sutskever, Ilya and Tenenbaum, Joshua B and Salakhutdinov, Ruslan R. [Paper]
Translating embeddings for modeling multi-relational data. NIPS 2013. Bordes, Antoine and Usunier, Nicolas and Garcia-Duran, Alberto and Weston, Jason and Yakhnenko, Oksana. [Paper]
Knowledge graph embedding by translating on hyperplanes. AAAI 2014. Wang, Zhen and Zhang, Jianwen and Feng, Jianlin and Chen, Zheng. [Paper]
Learning entity and relation embeddings for knowledge graph completion. AAAI 2015. Lin, Yankai and Liu, Zhiyuan and Sun, Maosong and Liu, Yang and Zhu, Xuan. [Paper] [Code]
STransE: a novel embedding model of entities and relationships in knowledge bases. NAACL 2016. Nguyen, Dat Quoc and Sirts, Kairit and Qu, Lizhen and Johnson, Mark. [Paper]
Knowledge graph embedding via dynamic mapping matrix. ACL 2015. Ji, Guoliang and He, Shizhu and Xu, Liheng and Liu, Kang and Zhao, Jun. [Paper]
A translation-based knowledge graph embedding preserving logical property of relations. NAACL 2016. Yoon, Hee-Geun and Song, Hyun-Je and Park, Seong-Bae and Park, Se-Young. [Paper]
Knowledge graph completion with adaptive sparse transfer matrix. AAAI 2016. Ji, Guoliang and Liu, Kang and He, Shizhu and Zhao, Jun. [Paper]
TransA: An adaptive approach for knowledge graph embedding. AAAI 2015. Xiao, Han and Huang, Minlie and Hao, Yu and Zhu, Xiaoyan. [Paper]
Knowledge graph embedding by flexible translation. KR 2016. Feng, Jun and Huang, Minlie and Wang, Mingdong and Zhou, Mantong and Hao, Yu and Zhu, Xiaoyan. [Paper]
Learning to represent knowledge graphs with gaussian embedding. CIKM 2015. He, Shizhu and Liu, Kang and Ji, Guoliang and Zhao, Jun. [Paper]
From one point to a manifold: Orbit models for knowledge graph embedding. IJCAI 2016. Xiao, Han and Huang, Minlie and Zhu, Xiaoyan. [Paper]
Modeling relation paths for representation learning of knowledge bases. EMNLP 2015. Lin, Yankai and Liu, Zhiyuan and Luan, Huanbo and Sun, Maosong and Rao, Siwei and Liu, Song. [Paper] [Code]
Composing relationships with translations. EMNLP 2015. García-Durán, Alberto and Bordes, Antoine and Usunier, Nicolas. [Paper] [Code]
Embedding Multimodal Relational Data for Knowledge Base Completion. EMNLP 2018. Pezeshkpour, Pouya, Liyan Chen, and Sameer Singh. [Paper] [Code] [Note]
Expanding Holographic Embeddings for Knowledge Completion. NIPS 2018. Yexiang Xue, Yang Yuan, Zhitian Xu, and Ashish Sabharwal. [Paper]
M-Walk: Learning to Walk over Graphs using Monte Carlo Tree Search. NIPS 2018. Yelong Shen, Jianshu Chen, Po-Sen Huang, Yuqing Guo, Jianfeng Gao. [Paper]
Compositional Vector Space Models for Knowledge Base Completion. ACL-IJCNLP 2015. Neelakantan, Arvind and Roth, Benjamin and McCallum, Andrew. [Paper]
Long-tail Relation Extraction via Knowledge Graph Embeddings and Graph Convolution Networks. NAACL 2019. Ningyu Zhang, Shumin Deng, Zhanlin Sun, Guanying Wang, Xi Chen, Wei Zhang, Huajun Chen. [Paper]
Neural Relation Extraction via Inner-Sentence Noise Reduction and Transfer Learning. EMNLP 2018. Liu, Tianyi, Xinsong Zhang, Wanhao Zhou, and Weijia Jia. [Paper] [Note]
DSGAN: Generative Adversarial Training for Robust Distant Supervision Relation Extraction. ACL 2018. Pengda Qin, Weiran Xu, William Yang Wang. [Paper]
Deep Residual Learning for Weakly-Supervised Relation Extraction. EMNLP 2017. Yi Yao Huang, William Yang Wang. [Paper] [Code]
Multi-Task Feature Learning for Knowledge Graph Enhanced Recommendation. WWW 2019. Wang, Hongwei, Fuzheng Zhang, Miao Zhao, Wenjie Li, Xing Xie, and Minyi Guo. [Paper] [Code]
Unifying Knowledge Graph Learning and Recommendation: Towards a Better Understanding of User Preference. WWW 2019. Yixin Cao, Xiang Wang, Xiangnan He, Zikun Hu, Tat-Seng Chua. [Paper] [Code] [Code]
Explianable Reasoning over Knowledge Graphs for Recommendation. AAAI 2019. Wang, Xiang and Wang, Dingxian and Xu, Canran and He, Xiangnan and Cao, Yixin and Chua, Tat-Seng. [Paper] [Code]
Dialog-to-Action: Conversational Question Answering Over a Large-Scale Knowledge Base. NIPS 2018. Daya Guo, Duyu Tang, Nan Duan, Ming Zhou, Jian Yin. [Paper]
Commonsense for Generative Multi-hop Question Answering Tasks. EMNLP 2018. Bauer, Lisa, Yicheng Wang, and Mohit Bansal. [Paper] [Code] [Note]
EARL: Joint Entity and Relation Linking for Question Answering over Knowledge Graphs. ISWC 2018. Dubey, Mohnish, Debayan Banerjee, Debanjan Chaudhuri, and Jens Lehmann. [Paper] [Note]
Pattern-revising Enhanced Simple Question Answering over Knowledge Bases. COLING 2018. Hao, Yanchao, Hao Liu, Shizhu He, Kang Liu, and Jun Zhao. [Paper] [Note]
Strong Baselines for Simple Question Answering over Knowledge Graphs with and without Neural Networks. NAACL 2018. Mohammed, Salman, Peng Shi, and Jimmy Lin. [Paper] [Note]
Transliteration Better than Translation? Answering Code-mixed Questions over a Knowledge Base. ACL 2018. Gupta, Vishal, Manoj Chinnakotla, and Manish Shrivastava. [Paper] [Note]
TEQUILA: Temporal Question Answering over Knowledge Bases. CIKM 2018. Zhen Jia, Abdalghani Abujabal, Rishiraj Saha Roy, Jannik Strötgen, Gerhard Weikum. [Paper]
Commonsense Knowledge Aware Conversation Generation with Graph Attention. IJCAI 2018. Zhou, Hao, Tom Young, Minlie Huang, Haizhou Zhao, Jingfang Xu, and Xiaoyan Zhu. [Paper] [Note]
HDSKG: harvesting domain specific knowledge graph from content of webpages. SANER 2017. Zhao, Xuejiao and Xing, Zhenchang and Kabir, Muhammad Ashad and Sawada, Naoya and Li, Jing and Lin, Shang-Wei. [Paper]
Improving API Caveats Accessibility by Mining API Caveats Knowledge Graph. CSME 2018. Li, Hongwei and Li, Sirui and Sun, Jiamou and Xing, Zhenchang and Peng, Xin and Liu, Mingwei and Zhao, Xuejiao. [Paper]
DeepWeak: reasoning common software weaknesses via knowledge graph embedding. SANER 2018. Han, Zhuobing and Li, Xiaohong and Liu, Hongtao and Xing, Zhenchang and Feng, Zhiyong. [Paper]
The structure and dynamics of knowledge network in domain-specific Q&A sites: a case study of stack overflow. Empirical Software Engineering 2017. Ye, Deheng and Xing, Zhenchang and Kapre, Nachiket [Paper]
Predicting semantically linkable knowledge in developer online forums via convolutional neural network. ICASE 2016. Xu, Bowen and Ye, Deheng and Xing, Zhenchang and Xia, Xin and Chen, Guibin and Li, Shanping. [Paper]
Mining Analogical Libraries in Q&A Discussions — Incorporating Relational and Categorical Knowledge into Word Embedding. SANER 2016. Chunyang Chen, Sa Gao, and Zhenchang Xing. [Paper]
TechLand: Assisting technology landscape inquiries with insights from stack overflow. ICSME 2016. Chen, Chunyang and Xing, Zhenchang and Han, Lei. [Paper]
Knowledge-aware Assessment of Severity of Suicide Risk for Early Intervention. WWW 2019. Gaur, Manas, Amanuel Alambo, Joy Prakash Sain, Ugur Kursuncu, Krishnaprasad Thirunarayan, Ramakanth Kavuluru, Amit Sheth, Randon S. Welton, and Jyotishman Pathak. [Paper]
Jointly Modeling Inter-Slot Relations by Random Walk on Knowledge Graphs for Unsupervised Spoken Language Understanding. NAACL-HLT 2015. Yun-Nung Chen, William Yang Wang, Alex Rudnicky. [Paper]
Hybrid Knowledge Routed Modules for Large-scale Object Detection. NIPS 2018. Chenhan Jiang, Hang Xu, Xiaodan Liang, and Liang Lin. [Paper] [Code]
HyTE: Hyperplane-based Temporally aware Knowledge Graph Embedding. EMNLP 2018. Dasgupta, Shib Sankar, Swayambhu Nath Ray, and Partha Talukdar. [Paper] [Code] [Note]
Out of the Box: Reasoning with Graph Convolution Nets for Factual Visual Question Answering. NIPS 2018. Medhini Narasimhan, Svetlana Lazebnik, Alex Schwing. [Paper]
Symbolic Graph Reasoning Meets Convolutions. NIPS 2018. Xiaodan Liang, Zhiting HU, Hao Zhang, Liang Lin, and Eric P. Xing. [Paper]
Variational Knowledge Graph Reasoning. NAACL-HLT 2018. Wenhu Chen, Wenhan Xiong, Xifeng Yan, William Yang Wang. [Paper]
DeepPath: A Reinforcement Learning Method for Knowledge Graph Reasoning. EMNLP 2017. Wenhan Xiong, Thien Hoang, William Yang Wang. [Paper] [Code]
Efficient Inference and Learning in a Large Knowledge Base: Reasoning with Extracted Information using a Locally Groundable First-Order Probabilistic Logic. MLJ 2015. William Yang Wang, Kathryn Mazaitis, Ni Lao, William W. Cohen. [Paper] [Code]
Reasoning with neural tensor networks for knowledge base completion. NIPS 2013. Socher, Richard and Chen, Danqi and Manning, Christopher D and Ng, Andrew. [Paper]
Probabilistic reasoning via deep learning: Neural association models. arXiv 2016. Liu, Quan and Jiang, Hui and Evdokimov, Andrew and Ling, Zhen-Hua and Zhu, Xiaodan and Wei, Si and Hu, Yu. [Paper]
Chains of Reasoning over Entities, Relations, and Text using Recurrent Neural Networks. EACL 2017. Das, Rajarshi and Neelakantan, Arvind and Belanger, David and McCallum, Andrew. [Paper] [Code]
One-Shot Relational Learning for Knowledge Graphs. EMNLP 2018. Xiong, Wenhan, Mo Yu, Shiyu Chang, Xiaoxiao Guo, and William Yang Wang. [Paper] [Code] [Note]
Multi-Label Zero-Shot Learning with Structured Knowledge Graphs. CVPR 2018. Chung-Wei Lee, Wei Fang, Chih-Kuan Yeh, Yu-Chiang Frank Wang. [Paper]
Rethinking Knowledge Graph Propagation for Zero-Shot Learning. 2018. Kampffmeyer, Michael and Chen, Yinbo and Liang, Xiaodan and Wang, Hao and Zhang, Yujia and Xing, Eric P. [Paper] [Code]
Zero-shot Recognition via Semantic Embeddings and Knowledge Graphs. CVPR 2018. Xiaolong Wang, Yufei Ye, Abhinav Gupta. [Paper] [Code]
注:相关论文和代码地址可从github原文获取。
-END-
专 · 知
专知《深度学习:算法到实战》课程全部完成!510+位同学在学习,现在报名,限时优惠!网易云课堂人工智能畅销榜首位!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程视频资料和与专家交流咨询!
请加专知小助手微信(扫一扫如下二维码添加),加入专知人工智能主题群,咨询《深度学习:算法到实战》课程,咨询技术商务合作~
请PC登录www.zhuanzhi.ai或者点击阅读原文,注册登录专知,获取更多AI知识资料!
点击“阅读原文”,了解报名专知《深度学习:算法到实战》课程