点击上方“专知”关注获取专业AI知识!
【导读】主题荟萃知识是专知的核心功能之一,为用户提供AI领域系统性的知识学习服务。主题荟萃为用户提供全网关于该主题的精华(Awesome)知识资料收录整理,使得AI从业者便捷学习和解决工作问题!在专知人工智能主题知识树基础上,主题荟萃由专业人工编辑和算法工具辅助协作完成,并保持动态更新!另外欢迎对此创作主题荟萃感兴趣的同学,请加入我们专知AI创作者计划,共创共赢! 今天专知为大家呈送第二十篇专知主题荟萃-图像分割Image Segmentation知识资料大全集荟萃 (入门/进阶/综述/视频/代码/专家等),请大家查看!专知访问www.zhuanzhi.ai, 或关注微信公众号后台回复" 专知"进入专知,搜索主题“图像分割”查看。此外,我们也提供该文网页桌面手机端(www.zhuanzhi.ai)完整访问,可直接点击访问收录链接地址,以及pdf版下载链接,请文章末尾查看!此为初始版本,请大家指正补充,欢迎在后台留言!欢迎大家分享转发~
图像分割 (Image Segmentation) 专知荟萃
入门学习
进阶论文
综述
Tutorial
视频教程
代码
Semantic segmentation
Instance aware segmentation
Satellite images segmentation
Video segmentation
Autonomous driving
Annotation Tools:
Datasets
比赛
领域专家
A 2017 Guide to Semantic Segmentation with Deep Learning 概述——用深度学习做语义分割
[http://blog.qure.ai/notes/semantic-segmentation-deep-learning-review]
中文翻译:[http://simonduan.site/2017/07/23/notes-semantic-segmentation-deep-learning-review/]
从全卷积网络到大型卷积核:深度学习的语义分割全指南
[https://www.jiqizhixin.com/articles/2017-07-14-10]
Fully Convolutional Networks
[http://simtalk.cn/2016/11/01/Fully-Convolutional-Networks/]
语义分割中的深度学习方法全解:从FCN、SegNet到各代DeepLab
[https://zhuanlan.zhihu.com/p/27794982]
图像语义分割之FCN和CRF
[https://zhuanlan.zhihu.com/p/22308032]
从特斯拉到计算机视觉之「图像语义分割」
[http://www.52cs.org/?p=1089]
计算机视觉之语义分割
[http://blog.geohey.com/ji-suan-ji-shi-jue-zhi-yu-yi-fen-ge/]
Segmentation Results: VOC2012 PASCAL语义分割比赛排名
[http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=6]
U-Net [https://arxiv.org/pdf/1505.04597.pdf]
SegNet [https://arxiv.org/pdf/1511.00561.pdf]
DeepLab [https://arxiv.org/pdf/1606.00915.pdf]
FCN [https://arxiv.org/pdf/1605.06211.pdf]
ENet [https://arxiv.org/pdf/1606.02147.pdf]
LinkNet [https://arxiv.org/pdf/1707.03718.pdf]
DenseNet [https://arxiv.org/pdf/1608.06993.pdf]
Tiramisu [https://arxiv.org/pdf/1611.09326.pdf]
DilatedNet [https://arxiv.org/pdf/1511.07122.pdf]
PixelNet [https://arxiv.org/pdf/1609.06694.pdf]
ICNet [https://arxiv.org/pdf/1704.08545.pdf]
ERFNet [http://www.robesafe.uah.es/personal/eduardo.romera/pdfs/Romera17iv.pdf]
RefineNet [https://arxiv.org/pdf/1611.06612.pdf]
PSPNet [https://arxiv.org/pdf/1612.01105.pdf]
CRFasRNN [http://www.robots.ox.ac.uk/%7Eszheng/papers/CRFasRNN.pdf]
Dilated convolution [https://arxiv.org/pdf/1511.07122.pdf]
DeconvNet [https://arxiv.org/pdf/1505.04366.pdf]
FRRN [https://arxiv.org/pdf/1611.08323.pdf]
GCN [https://arxiv.org/pdf/1703.02719.pdf]
DUC, HDC [https://arxiv.org/pdf/1702.08502.pdf]
Segaware [https://arxiv.org/pdf/1708.04607.pdf]
Semantic Segmentation using Adversarial Networks [https://arxiv.org/pdf/1611.08408.pdf]
A Review on Deep Learning Techniques Applied to Semantic Segmentation Alberto Garcia-Garcia, Sergio Orts-Escolano, Sergiu Oprea, Victor Villena-Martinez, Jose Garcia-Rodriguez 2017
[https://arxiv.org/abs/1704.06857]
Computer Vision for Autonomous Vehicles: Problems, Datasets and State-of-the-Art
[https://arxiv.org/abs/1704.05519]
基于内容的图像分割方法综述 姜 枫 顾 庆 郝慧珍 李 娜 郭延文 陈道蓄 2017
[http://www.jos.org.cn/ch/reader/create_pdf.aspx?file_no=5136&journal_id=jos\]
Semantic Image Segmentation with Deep Learning
[http://www.robots.ox.ac.uk/~sadeep/files/crfasrnn_presentation.pdf\]
A 2017 Guide to Semantic Segmentation with Deep Learning
[http://blog.qure.ai/notes/semantic-segmentation-deep-learning-review]
Image Segmentation with Tensorflow using CNNs and Conditional Random Fields
[http://warmspringwinds.github.io/tensorflow/tf-slim/2016/12/18/image-segmentation-with-tensorflow-using-cnns-and-conditional-random-fields/]
CS231n: Convolutional Neural Networks for Visual Recognition Lecture 11 Detection and Segmentation
[http://cs231n.stanford.edu/syllabus.html]
Machine Learning for Semantic Segmentation - Basics of Modern Image Analysis
[https://www.youtube.com/watch?v=psLChcm8aiU]
U-Net (https://arxiv.org/pdf/1505.04597.pdf)
https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/ (Caffe - Matlab)
https://github.com/jocicmarko/ultrasound-nerve-segmentation (Keras)
https://github.com/EdwardTyantov/ultrasound-nerve-segmentation (Keras)
https://github.com/ZFTurbo/ZF_UNET_224_Pretrained_Model (Keras)
https://github.com/yihui-he/u-net (Keras)
https://github.com/jakeret/tf_unet (Tensorflow)
https://github.com/DLTK/DLTK/blob/master/examples/Toy_segmentation/simple_dltk_unet.ipynb (Tensorflow)
https://github.com/divamgupta/image-segmentation-keras (Keras)
https://github.com/ZijunDeng/pytorch-semantic-segmentation (PyTorch)
https://github.com/akirasosa/mobile-semantic-segmentation (Keras)
https://github.com/orobix/retina-unet (Keras)
SegNet (https://arxiv.org/pdf/1511.00561.pdf)
https://github.com/alexgkendall/caffe-segnet (Caffe)
https://github.com/developmentseed/caffe/tree/segnet-multi-gpu (Caffe)
https://github.com/preddy5/segnet (Keras)
https://github.com/imlab-uiip/keras-segnet (Keras)
https://github.com/andreaazzini/segnet (Tensorflow)
https://github.com/fedor-chervinskii/segnet-torch (Torch)
https://github.com/0bserver07/Keras-SegNet-Basic (Keras)
https://github.com/tkuanlun350/Tensorflow-SegNet (Tensorflow)
https://github.com/divamgupta/image-segmentation-keras (Keras)
https://github.com/ZijunDeng/pytorch-semantic-segmentation (PyTorch)
https://github.com/chainer/chainercv/tree/master/examples/segnet (Chainer)
https://github.com/ykamikawa/keras-SegNet (Keras)
DeepLab (https://arxiv.org/pdf/1606.00915.pdf)
https://bitbucket.org/deeplab/deeplab-public/ (Caffe)
https://github.com/cdmh/deeplab-public (Caffe)
https://bitbucket.org/aquariusjay/deeplab-public-ver2 (Caffe)
https://github.com/TheLegendAli/DeepLab-Context (Caffe)
https://github.com/msracver/Deformable-ConvNets/tree/master/deeplab (MXNet)
https://github.com/DrSleep/tensorflow-deeplab-resnet (Tensorflow)
https://github.com/muyang0320/tensorflow-deeplab-resnet-crf (TensorFlow)
https://github.com/isht7/pytorch-deeplab-resnet (PyTorch)
https://github.com/bermanmaxim/jaccardSegment (PyTorch)
https://github.com/martinkersner/train-DeepLab (Caffe)
https://github.com/chenxi116/TF-deeplab (Tensorflow)
FCN (https://arxiv.org/pdf/1605.06211.pdf)
https://github.com/vlfeat/matconvnet-fcn (MatConvNet)
https://github.com/shelhamer/fcn.berkeleyvision.org (Caffe)
https://github.com/MarvinTeichmann/tensorflow-fcn (Tensorflow)
https://github.com/aurora95/Keras-FCN (Keras)
https://github.com/mzaradzki/neuralnets/tree/master/vgg_segmentation_keras (Keras)
https://github.com/k3nt0w/FCN_via_keras (Keras)
https://github.com/shekkizh/FCN.tensorflow (Tensorflow)
https://github.com/seewalker/tf-pixelwise (Tensorflow)
https://github.com/divamgupta/image-segmentation-keras (Keras)
https://github.com/ZijunDeng/pytorch-semantic-segmentation (PyTorch)
https://github.com/wkentaro/pytorch-fcn (PyTorch)
https://github.com/wkentaro/fcn (Chainer)
https://github.com/apache/incubator-mxnet/tree/master/example/fcn-xs (MxNet)
https://github.com/muyang0320/tf-fcn (Tensorflow)
https://github.com/ycszen/pytorch-seg (PyTorch)
https://github.com/Kaixhin/FCN-semantic-segmentation (PyTorch)
ENet (https://arxiv.org/pdf/1606.02147.pdf)
https://github.com/TimoSaemann/ENet (Caffe)
https://github.com/e-lab/ENet-training (Torch)
https://github.com/PavlosMelissinos/enet-keras (Keras)
LinkNet (https://arxiv.org/pdf/1707.03718.pdf)
https://github.com/e-lab/LinkNet (Torch)
DenseNet (https://arxiv.org/pdf/1608.06993.pdf)
https://github.com/flyyufelix/DenseNet-Keras (Keras)
Tiramisu (https://arxiv.org/pdf/1611.09326.pdf)
https://github.com/0bserver07/One-Hundred-Layers-Tiramisu (Keras)
https://github.com/SimJeg/FC-DenseNet (Lasagne)
DilatedNet (https://arxiv.org/pdf/1511.07122.pdf)
https://github.com/nicolov/segmentation_keras (Keras)
PixelNet (https://arxiv.org/pdf/1609.06694.pdf)
https://github.com/aayushbansal/PixelNet (Caffe)
ICNet (https://arxiv.org/pdf/1704.08545.pdf)
https://github.com/hszhao/ICNet (Caffe)
ERFNet (http://www.robesafe.uah.es/personal/eduardo.romera/pdfs/Romera17iv.pdf)
https://github.com/Eromera/erfnet (Torch)
RefineNet (https://arxiv.org/pdf/1611.06612.pdf)
https://github.com/guosheng/refinenet (MatConvNet)
PSPNet (https://arxiv.org/pdf/1612.01105.pdf)
https://github.com/hszhao/PSPNet (Caffe)
https://github.com/ZijunDeng/pytorch-semantic-segmentation (PyTorch)
https://github.com/mitmul/chainer-pspnet (Chainer)
https://github.com/Vladkryvoruchko/PSPNet-Keras-tensorflow (Keras/Tensorflow)
https://github.com/pudae/tensorflow-pspnet (Tensorflow)
CRFasRNN (http://www.robots.ox.ac.uk/%7Eszheng/papers/CRFasRNN.pdf)
https://github.com/torrvision/crfasrnn (Caffe)
https://github.com/sadeepj/crfasrnn_keras (Keras)
Dilated convolution (https://arxiv.org/pdf/1511.07122.pdf)
https://github.com/fyu/dilation (Caffe)
https://github.com/fyu/drn#semantic-image-segmentataion (PyTorch)
https://github.com/hangzhaomit/semantic-segmentation-pytorch (PyTorch)
DeconvNet (https://arxiv.org/pdf/1505.04366.pdf)
http://cvlab.postech.ac.kr/research/deconvnet/ (Caffe)
https://github.com/HyeonwooNoh/DeconvNet (Caffe)
https://github.com/fabianbormann/Tensorflow-DeconvNet-Segmentation (Tensorflow)
FRRN (https://arxiv.org/pdf/1611.08323.pdf)
https://github.com/TobyPDE/FRRN (Lasagne)
GCN (https://arxiv.org/pdf/1703.02719.pdf)
https://github.com/ZijunDeng/pytorch-semantic-segmentation (PyTorch)
https://github.com/ycszen/pytorch-seg (PyTorch)
DUC, HDC (https://arxiv.org/pdf/1702.08502.pdf)
https://github.com/ZijunDeng/pytorch-semantic-segmentation (PyTorch)
https://github.com/ycszen/pytorch-seg (PyTorch)
Segaware (https://arxiv.org/pdf/1708.04607.pdf)
https://github.com/aharley/segaware (Caffe)
Semantic Segmentation using Adversarial Networks (https://arxiv.org/pdf/1611.08408.pdf)
https://github.com/oyam/Semantic-Segmentation-using-Adversarial-Networks (Chainer)
FCIS [https://arxiv.org/pdf/1611.07709.pdf]
https://github.com/msracver/FCIS [MxNet]
MNC [https://arxiv.org/pdf/1512.04412.pdf]
https://github.com/daijifeng001/MNC [Caffe]
DeepMask [https://arxiv.org/pdf/1506.06204.pdf]
https://github.com/facebookresearch/deepmask [Torch]
SharpMask [https://arxiv.org/pdf/1603.08695.pdf]
https://github.com/facebookresearch/deepmask [Torch]
Mask-RCNN [https://arxiv.org/pdf/1703.06870.pdf]
https://github.com/CharlesShang/FastMaskRCNN [Tensorflow]
https://github.com/TuSimple/mx-maskrcnn [MxNet]
https://github.com/matterport/Mask_RCNN [Keras]
https://github.com/jasjeetIM/Mask-RCNN [Caffe]
RIS [https://arxiv.org/pdf/1511.08250.pdf]
https://github.com/bernard24/RIS [Torch]
FastMask [https://arxiv.org/pdf/1612.08843.pdf]
https://github.com/voidrank/FastMask [Caffe]
https://github.com/mshivaprakash/sat-seg-thesis
https://github.com/KGPML/Hyperspectral
https://github.com/lopuhin/kaggle-dstl
https://github.com/mitmul/ssai
https://github.com/mitmul/ssai-cnn
https://github.com/azavea/raster-vision
https://github.com/nshaud/DeepNetsForEO
https://github.com/trailbehind/DeepOSM
https://github.com/shelhamer/clockwork-fcn
https://github.com/JingchunCheng/Seg-with-SPN
https://github.com/MarvinTeichmann/MultiNet
https://github.com/MarvinTeichmann/KittiSeg
https://github.com/vxy10/p5_VehicleDetection_Unet [Keras]
https://github.com/ndrplz/self-driving-car
https://github.com/mvirgo/MLND-Capstone
https://github.com/AKSHAYUBHAT/ImageSegmentation
https://github.com/kyamagu/js-segment-annotator
https://github.com/CSAILVision/LabelMeAnnotationTool
https://github.com/seanbell/opensurfaces-segmentation-ui
https://github.com/lzx1413/labelImgPlus
https://github.com/wkentaro/labelme
Stanford Background Dataset[http://dags.stanford.edu/projects/scenedataset.html]
Sift Flow Dataset[http://people.csail.mit.edu/celiu/SIFTflow/]
Barcelona Dataset[http://www.cs.unc.edu/~jtighe/Papers/ECCV10/]
Microsoft COCO dataset[http://mscoco.org/]
MSRC Dataset[http://research.microsoft.com/en-us/projects/objectclassrecognition/]
LITS Liver Tumor Segmentation Dataset[https://competitions.codalab.org/competitions/15595]
KITTI[http://www.cvlibs.net/datasets/kitti/eval_road.php]
Stanford background dataset[http://dags.stanford.edu/projects/scenedataset.html]
Data from Games dataset[https://download.visinf.tu-darmstadt.de/data/from_games/]
Human parsing dataset[https://github.com/lemondan/HumanParsing-Dataset]
Silenko person database[https://github.com/Maxfashko/CamVid]
Mapillary Vistas Dataset[https://www.mapillary.com/dataset/vistas]
Microsoft AirSim[https://github.com/Microsoft/AirSim]
MIT Scene Parsing Benchmark[http://sceneparsing.csail.mit.edu/]
COCO 2017 Stuff Segmentation Challenge[http://cocodataset.org/#stuff-challenge2017]
ADE20K Dataset[http://groups.csail.mit.edu/vision/datasets/ADE20K/]
INRIA Annotations for Graz-02[http://lear.inrialpes.fr/people/marszalek/data/ig02/]
MSRC-21 [http://rodrigob.github.io/are_we_there_yet/build/semantic_labeling_datasets_results.html]
Cityscapes [https://www.cityscapes-dataset.com/benchmarks/]
VOC2012 [http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=6]
Jonathan Long
[http://people.eecs.berkeley.edu/~jonlong/\]
Liang-Chieh Chen
[http://liangchiehchen.com/]
Hyeonwoo Noh
[http://cvlab.postech.ac.kr/~hyeonwoonoh/\]
Bharath Hariharan
[http://home.bharathh.info/]
Fisher Yu
[http://www.yf.io/]
Vijay Badrinarayanan
[https://sites.google.com/site/vijaybacademichomepage/home/papers]
Guosheng Lin
[https://sites.google.com/site/guoshenglin/]
初步版本,水平有限,有错误或者不完善的地方,欢迎大家提建议和补充(到专知网站www.zhuanzhi.ai 主题下评论),会一直保持更新,敬请关注http://www.zhuanzhi.ai 和关注专知公众号,获取最新AI相关知识。
特别提示-专知图像分割主题:
请PC登录www.zhuanzhi.ai或者点击阅读原文,注册登录,顶端搜索“图像分割” 主题,查看评论获得专知荟萃全集知识等资料,直接PC端访问体验更佳!如下图所示~
此外,请关注专知公众号(扫一扫最下面专知二维码,或者点击上方蓝色专知),
后台回复“图像分割”或者“SEG” 就可以在手机端获取专知图像分割资料查看链接地址,直接打开荟萃资料的链接地址~~
请扫描专知小助手,加入专知人工智能群交流~
往期专知荟萃知识资料全集获取(关注本公众号-专知,获取下载链接),请查看:
【专知荟萃01】深度学习知识资料大全集(入门/进阶/论文/代码/数据/综述/领域专家等)(附pdf下载)
【专知荟萃02】自然语言处理NLP知识资料大全集(入门/进阶/论文/Toolkit/数据/综述/专家等)(附pdf下载)
【专知荟萃03】知识图谱KG知识资料全集(入门/进阶/论文/代码/数据/综述/专家等)(附pdf下载)
【专知荟萃04】自动问答QA知识资料全集(入门/进阶/论文/代码/数据/综述/专家等)(附pdf下载)
【专知荟萃05】聊天机器人Chatbot知识资料全集(入门/进阶/论文/软件/数据/专家等)(附pdf下载)
【专知荟萃06】计算机视觉CV知识资料大全集(入门/进阶/论文/课程/会议/专家等)(附pdf下载)
【专知荟萃07】自动文摘AS知识资料全集(入门/进阶/代码/数据/专家等)(附pdf下载)
【专知荟萃08】图像描述生成Image Caption知识资料全集(入门/进阶/论文/综述/视频/专家等)
【专知荟萃09】目标检测知识资料全集(入门/进阶/论文/综述/视频/代码等)
【专知荟萃10】推荐系统RS知识资料全集(入门/进阶/论文/综述/视频/代码等)
【专知荟萃11】GAN生成式对抗网络知识资料全集(理论/报告/教程/综述/代码等)
【专知荟萃12】信息检索 Information Retrieval 知识资料全集(入门/进阶/综述/代码/专家,附PDF下载)
【专知荟萃13】工业学术界用户画像 User Profile 实用知识资料全集(入门/进阶/竞赛/论文/PPT,附PDF下载)
【专知荟萃14】机器翻译 Machine Translation知识资料全集(入门/进阶/综述/视频/代码/专家,附PDF下载)
【专知荟萃15】图像检索Image Retrieval知识资料全集(入门/进阶/综述/视频/代码/专家,附PDF下载)
【专知荟萃16】主题模型Topic Model知识资料全集(基础/进阶/论文/综述/代码/专家,附PDF下载)
【专知荟萃17】情感分析Sentiment Analysis 知识资料全集(入门/进阶/论文/综述/视频/专家,附查看)
【专知荟萃18】目标跟踪Object Tracking知识资料全集(入门/进阶/论文/综述/视频/专家,附查看)
【专知荟萃19】图像识别Image Recognition知识资料全集(入门/进阶/论文/综述/视频/专家,附查看)
-END-
欢迎使用专知
专知,一个新的认知方式!专注在人工智能领域为AI从业者提供专业可信的知识分发服务, 包括主题定制、主题链路、搜索发现等服务,帮你又好又快找到所需知识。
使用方法>>访问www.zhuanzhi.ai, 或点击文章下方“阅读原文”即可访问专知
中国科学院自动化研究所专知团队
@2017 专知
专 · 知
关注我们的公众号,获取最新关于专知以及人工智能的资讯、技术、算法、深度干货等内容。扫一扫下方关注我们的微信公众号。
点击“阅读原文”,使用专知!