【导读】NIPS2018论文一览
Zero-Shot Transfer with Deictic Object-Oriented Representation in Reinforcement Learning
Ofir Marom · Benjamin Rosman
Poster
The Price of Fair PCA: One Extra dimension
Samira Samadi · Uthaipon Tantipongpipat · Jamie Morgenstern · Mohit Singh · Santosh Vempala
Poster
Transfer of Deep Reactive Policies for MDP Planning
Aniket Bajpai · Sankalp Garg · Mausam
Poster
Sequential Data Classification for Resource-constrained Devices
Prateek Jain · Harsha Vardhan Simhadri · Don Dennis ·
Poster
Sparse PCA from Sparse Linear Regression
Madalina Persu · Guy Bresler · Sam Park
Poster
Computationally and Statistically Efficient Learning of Bayes Nets Using Path Queries
Kevin Bello · Jean Honorio
Poster
Point process latent variable models of freely swimming larval zebrafish
Anuj Sharma · Scott Linderman · Robert Johnson · Florian Engert
Poster
Contrastive Learning from Pairwise Measurements
· Zhuoran Yang · Yuchen Xie · Princeton Zhaoran Wang
Poster
Topkapi: Parallel and Fast Algorithm for Finding Top-K Frequent Elements
Ankush Mandal · He Jiang · Anshumali Shrivastava · Vivek Sarkar
Poster
Removing Hidden Confounding by Experimental Grounding
Uri Shalit · Nathan Kallus · Aahlad Manas Puli
Poster
Semidefinite relaxations for certifying robustness to adversarial examples
Aditi Raghunathan · Percy Liang · Jacob Steinhardt
Poster
MixLasso: Generalized Mixed Regression via Convex Atomic-Norm Regularization
Ian En-Hsu Yen · Pradeep Ravikumar · Shou-De Lin · Wei-Cheng Lee
Poster
Smoothed Analysis of Discrete Tensor Decomposition and Assemblies of Neurons
Nima Anari · Constantinos Daskalakis · Wolfgang Maass · Christos Papadimitriou · Amin Saberi · Santosh Vempala
Poster
Domain Adaptation by Using Causal Inference to Predict Invariant Conditional Distributions
Sara Magliacane · Thijs van Ommen · Tom Claassen · Stephan Bongers · Philip Versteeg · Joris M Mooij
Poster
Multi-value Rule Sets for Interpretable Classification with Feature-Efficient Representations
Tong Wang
Poster
Differentially Private Change-Point Detection
Sara Krehbiel · Rachel Cummings · Wanrong Zhang · Yajun Mei · Rui Tuo
Poster
Support Recovery for Orthogonal Matching Pursuit: Upper and Lower bounds
Raghav Somani · Chirag Gupta · Prateek Jain · Praneeth Netrapalli
Poster
Fast and Effective Robustness Certification
Gagandeep Singh · Timon Gehr · Matthew Mirman · Markus Püschel · Martin Vechev
Poster
Bias and Generalization in Deep Generative Models: An Empirical Study
Shengjia Zhao · Hongyu Ren · Arianna Yuan · Jiaming Song · Stefano Ermon
Poster
Learning Temporal Point Processes via Reinforcement Learning
Shuang Li · SHUAI XIAO · Shixiang Zhu · Nan Du · Yao Xie · Le Song
Poster
Benefits of overparameterization with EM
Ji Xu · Daniel Hsu · Arian Maleki
Poster
Learning Beam Search Policies via Imitation Learning
Renato Negrinho · Matthew Gormley · Geoffrey Gordon
Poster
Data-Driven Clustering
Maria-Florina Balcan · Travis Dick · Colin White
Poster
Understanding Regularized Spectral Clustering via Graph Conductance
Yilin Zhang · Karl Rohe
Poster
Fully Neural Network Based Speech Recognition on Mobile and Embedded Devices
Jinhwan Park · Yoonho Boo · Iksoo Choi · Sungho Shin · Wonyong Sung
Poster
Connecting Optimization and Regularization Paths
Arun Suggala · Adarsh Prasad · Pradeep Ravikumar
Poster
Sketching Method for Large Scale Combinatorial Inference
Wei Sun · Junwei Lu · Han Liu
Poster
Regret Bounds for Online Portfolio Selection with a Cardinality Constraint
Shinji Ito · Daisuke Hatano · Sumita Hanna · Akihiro Yabe · Takuro Fukunaga · Naonori Kakimura · Ken-Ichi Kawarabayashi
Poster
Improved Network Robustness with Adversary Critic
Alexander Matyasko · Lap-Pui Chau
Poster
Fast deep reinforcement learning using online adjustments from the past
Steven Hansen · Alexander Pritzel · Pablo Sprechmann · Andre Barreto · Charles Blundell
Poster
Streamlining constraints for random k-SAT
Aditya Grover · Tudor Achim
Poster
Learning a Warping Distance from Unlabeled Time Series Using Sequence Autoencoders
Abubakar Abid · James Zou
Poster
Gated Complex Recurrent Neural Networks
Moritz Wolter ·
Poster
Bayesian Structure Learning by Recursive Bootstrap
Raanan Yehezkel Rohekar · Yaniv Gurwicz · shami nisimov · Guy Koren · Gal Novik
Poster
The Sparse Manifold Transform
Yubei Chen · Dylan Paiton · Bruno A Olshausen
Poster
Deep Generative Models with Learnable Knowledge Constraints
Zhiting Hu · Zichao Yang · Ruslan Salakhutdinov · LIANHUI Qin · Xiaodan Liang · Haoye Dong · Eric Xing
Poster
Diversity-Driven Exploration Strategy for Deep Reinforcement Learning
Zhang-Wei Hong · Tzu-Yun Shann · Shih-Yang Su · Yi-Hsiang Chang · Tsu-Jui Fu · Chun-Yi Lee
Poster
Regret bounds for meta Bayesian optimization with an unknown Gaussian process prior
Zi Wang · Beomjoon Kim · Leslie Kaelbling
Poster
Discretely Relaxing Continuous Variables for tractable Variational Inference
Trefor Evans · Prasanth Nair
Poster
Using Trusted Data to Train Deep Networks on Labels Corrupted by Severe Noise
Mantas Mazeika · Dan Hendrycks
Poster
Temporal alignment and latent Gaussian process factor inference in population spike trains
Lea Duncker · Maneesh Sahani
Poster
Bounded-Loss Private Prediction Markets
Rafael Frongillo · Bo Waggoner
Poster
Learning Abstract Options
Matthew Riemer · Miao Liu · Gerald Tesauro
Poster
Deep Learning for Supercomputers: Distributed Tensor Layouts Define Distributed Computation
Noam Shazeer · Niki Parmar · Youlong Cheng · Ashish Vaswani · Mingsheng Hong · Peter Hawkins · Cliff Young · HyoukJoong Lee
Poster
Convex Elicitation of Continuous Properties
Jessica Finocchiaro · Rafael Frongillo
Poster
Context-aware Synthesis and Placement of Object Instances
Donghoon Lee · Ming-Yu Liu · Ming-Hsuan Yang · Sifei Liu · Jinwei Gu · Jan Kautz
Poster
3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data
Maurice Weiler · Wouter Boomsma · Mario Geiger · Max Welling · Taco Cohen
Poster
Gaussian Process Prior Variational Autoencoders
Francesco Paolo Casale · Luca Saglietti · Jennifer Listgarten · Nicolo Fusi · Adrian Dalca
Poster
Adversarial Risk and Robustness for Discrete Distributions
Dimitrios Diochnos · Saeed Mahlouji Far · Mohammad Mahmoody
Poster
Unsupervised Image-to-Image Translation Using Domain-Specific Variational Information Bound
Hadi Kazemi · Sobhan Soleymani · Fariborz Taherkhani · Ali Dabouei · Seyed Iranmanesh ·
Poster
Using Quantum Graphical Models to Perform Inference in Hilbert Space
Siddarth Srinivasan · Carlton Downey · Byron Boots
Poster
Lifted Weighted Mini-Bucket
Nicholas Gallo · Alexander Ihler
Poster
Learning to solve SMT formulas
Mislav Balunovic · Pavol Bielik · Martin Vechev
Poster
PCA of high dimensional stochastic processes
Joseph Antognini · Jascha Sohl-Dickstein
Poster
Improving Simple Models with Confidence Profiles
Amit Dhurandhar · Karthikeyan Shanmugam · Ronny Luss · Peder A Olsen
Poster
Robust Learning of Fixed-Structure Bayesian Networks
Yu Cheng · Ilias Diakonikolas · Daniel Kane · Alistair Stewart
Poster
Learning conditional GAN using noisy labels
Kiran Thekumparampil · Ashish Khetan · Sewoong Oh
Poster
Predictive Approximate Bayesian Computation via Saddle Points
Yingxiang Yang · Bo Dai · Niao He · Negar Kiyavash
Poster
Learning to Share and Hide Intentions using Information Regularization
DJ Strouse · Max Kleiman-Weiner · Josh Tenenbaum · Matt Botvinick · David Schwab
Poster
Generalizing Point Embeddings using the Wasserstein Space of Elliptical Distributions
Boris Muzellec · marco Cuturi
Poster
Glow: Generative Flow with Invertible 1x1 Convolutions
Durk Kingma · Prafulla Dhariwal
Poster
Total stochastic gradient algorithms and applications in reinforcement learning
Paavo Parmas
Poster
Learning with SGD and Random Features
Luigi Carratino · Lorenzo Rosasco · Alessandro Rudi
Poster
Backpropagation with Callbacks: Towards Efficient and Expressive Differentiable Programming
Fei Wang · James Decker · Xilun Wu · Gregory Essertel · Tiark Rompf
Poster
Learning To Learn Around A Common Mean
Massimiliano Pontil · giulia.denevi@gmail.com Denevi · Carlo Ciliberto · Dimitris Stamos
Poster
Human-in-the-Loop Interpretability Prior
Isaac Lage · Andrew Ross · Samuel J Gershman · Been Kim · Finale Doshi-Velez
Poster
Synaptic Strength For Convolutional Neural Network
CHEN LIN · Zhao Zhong · Wu Wei
Poster
A Spectral View of Adversarially Robust Features
Shivam Garg · Vatsal Sharan · Gregory Valiant · Brian Zhang
Poster
Bayesian Nonparametric Spectral Estimation
Felipe Tobar
Poster
Clebsch–Gordan Nets: a Fully Fourier Space Spherical Convolutional Neural Network
Risi Kondor · Zhen Lin · Shubhendu Trivedi
Poster
A Simple Cache Model for Image Recognition
Emin Orhan
Poster
Low-rank Tucker decomposition of large tensors using TensorSketch
Osman Asif Malik · Stephen Becker
Poster
Blockwise Parallel Decoding for Deep Autoregressive Models
Mitchell Stern · Noam Shazeer · Jakob Uszkoreit
Poster
Thwarting Adversarial Examples: An -Robust Sparse Fourier Transform
Nikhil Vyas · Jack Murtagh · Mitali Bafna
Poster
Testing for Families of Distributions via the Fourier Transform
Alistair Stewart · Ilias Diakonikolas · Clement Canonne
Poster
A Retrieve-and-Edit Framework for Predicting Structured Outputs
Tatsunori B Hashimoto · Kelvin Guu · Yonatan Oren · Percy Liang
Poster
Scalable Laplacian K-modes
Imtiaz Ziko · Ismail Ben Ayed · Eric Granger
Poster
Blind Deconvolutional Phase Retrieval via Convex Programming
Ali Ahmed · Alireza Aghasi · Paul Hand
Poster
Neural Voice Cloning with a Few Samples
Sercan Arik · Jitong Chen · Kainan Peng · Wei Ping · Yanqi Zhou
Poster
Persistence Fisher Kernel: A Riemannian Manifold Kernel for Persistence Diagrams
Tam Le · Makoto Yamada
Poster
Memory Augmented Policy Optimization for Program Synthesis with Generalization
Chen Liang · Mohammad Norouzi · Jonathan Berant · Quoc V Le · Ni Lao
Poster
Learning to Reason with Third Order Tensor Products
Imanol Schlag · Jürgen Schmidhuber
Poster
Post: Device Placement with Cross-Entropy Minimization and Proximal Policy Optimization
Yuanxiang Gao · Li Chen · Baochun Li
Poster
Using Large Ensembles of Control Variates for Variational Inference
Tomas Geffner · Justin Domke
Poster
Non-delusional Q-learning and Value-iteration
Tyler Lu · Craig Boutilier · Dale Schuurmans
Poster
Learning Invariances using the Marginal Likelihood
Mark van der Wilk · Matthias Bauer · ST John · James Hensman
Poster
Uplift Modeling from Separate Labels
Ikko Yamane · Florian Yger · Jamal Atif · Masashi Sugiyama
Poster
Online Robust Policy Learning in the Presence of Unknown Adversaries
Aaron Havens · Zhanhong Jiang · Soumik Sarkar
Poster
Variance-Reduced Stochastic Gradient Descent on Streaming Data
Ellango Jothimurugesan · Ashraf Tahmasbi · Phillip Gibbons · Srikanta Tirthapura
Poster
On Markov Chain Gradient Descent
Tao Sun · Yuejiao Sun · Wotao Yin
Poster
Maximizing acquisition functions for Bayesian optimization
James Wilson · Frank Hutter · Marc Deisenroth
Poster
Life-Long Disentangled Representation Learning with Cross-Domain Latent Homologies
Alessandro Achille · Tom Eccles · Loic Matthey · Chris Burgess · Nicholas Watters · Alexander Lerchner · Irina Higgins
Poster
Dynamic Network Model from Partial Observations
Elahe Ghalebi · Baharan Mirzasoleiman · Radu Grosu · Jure Leskovec
Poster
ATOMO: Communication-efficient Learning via Atomic Sparsification
Zachary B Charles · Hongyi Wang · Scott Sievert · Dimitris Papailiopoulos · Stephen Wright
Poster
Reinforcement Learning for Solving the Vehicle Routing Problem
· Afshin Oroojlooy · Lawrence Snyder · Martin Takac
Poster
Scalable End-to-End Autonomous Vehicle Testing via Rare-event Simulation
Matthew O'Kelly · Aman Sinha · Hongseok Namkoong · Russ Tedrake · John C Duchi
Poster
Temporal abstraction for recurrent dynamical models
Alexander Neitz · Giambattista Parascandolo · Stefan Bauer · Bernhard Schölkopf
Poster
Object-Oriented Dynamics Predictor
Guangxiang Zhu · Chongjie Zhang
Poster
Adaptive Methods for Nonconvex Optimization
Manzil Zaheer · Sashank Reddi · Devendra Sachan · Satyen Kale · Sanjiv Kumar
Poster
Entropy Rate Estimation for Markov Chains with Large State Space
Yanjun Han · Jiantao Jiao · Chuan-Zheng Lee · Tsachy Weissman · Yihong Wu · Tiancheng Yu
Poster
Large Scale computation of Means and Clusters for Persistence Diagrams using Optimal Transport
Theo Lacombe · marco Cuturi · Steve OUDOT
Poster
Deep Anomaly Detection Using Geometric Transformations
Izhak Golan · Ran El-Yaniv
Poster
Generalization Bounds for Uniformly Stable Algorithms
Vitaly Feldman · Jan Vondrak
Poster
Unsupervised Depth Estimation, 3D Face Rotation and Replacement
Joel Moniz · Christopher Beckham · Sina Honari · Chris Pal
Poster
Towards Deep Conversational Recommendations
Raymond Li · Samira Ebrahimi Kahou · Hannes Schulz · Vincent Michalski · Laurent Charlin · Chris Pal
Poster
Latent Alignment and Variational Attention
Yoon Kim · Yuntian Deng · Justin Chiu · Demi Guo · Alexander Rush
Poster
Improving Explorability in Variational Inference with Annealed Variational Objectives
Chin-Wei Huang · Shawn Tan · Alexandre Lacoste · Aaron C Courville
Poster
Coupled Variational Bayes via Optimization Embedding
Bo Dai · Hanjun Dai · Niao He · Weiyang Liu · Zhen Liu · Jianshu Chen · Lin Xiao · Le Song
Poster
Theoretical guarantees for EM under misspecified Gaussian mixture models
Raaz Dwivedi · nhật Hồ · Koulik Khamaru · Martin Wainwright · Michael Jordan
Poster
Non-convex Optimization with Discretized Diffusions
Murat A Erdogdu · Lester Mackey · Ohad Shamir
Poster
Improving Online Algorithms via ML Predictions
Manish Purohit · Zoya Svitkina · Ravi Kumar
Poster
Multi-Agent Reinforcement Learning via Double Averaging Primal-Dual Optimization
Hoi-To Wai · Princeton Zhaoran Wang · Zhuoran Yang · Mingyi Hong
Poster
Ex ante correlation and collusion in zero-sum multi-player extensive-form games
Andrea Celli · Gabriele Farina · Nicola Gatti · Tuomas Sandholm
Poster
Invertibility of Convolutional Generative Networks from Partial Measurements
Fangchang Ma · Ulas Ayaz · Sertac Karaman
Poster
Trading robust representations for sample complexity through self-supervised visual experience
Andrea Tacchetti · Stephen Voinea · Georgios Evangelopoulos
Poster
An intriguing failing of convolutional neural networks and the CoordConv solution
Rosanne Liu · Joel Lehman · Eric Frank · Felipe Petroski Such · Alex Sergeev · Jason Yosinski
Poster
Optimal Algorithms for Continuous Non-monotone Submodular and DR-Submodular Maximization
Rad Niazadeh · Tim Roughgarden · Joshua Wang
Poster
To What Extent Do Different Neural Networks Learn the Same Representation: A Neuron Activation Subspace Match Approach
Liwei Wang · Lunjia Hu · Jiayuan Gu · Zhiqiang Hu · Yue Wu · Kun He · John Hopcroft
Poster
Neural Proximal Gradient Descent for Compressive Imaging
Morteza Mardani · · David Donoho · Vardan Papyan · Hatef Monajemi · Shreyas Vasanawala · John Pauly
Poster
Learning convex bounds for linear quadratic control policy synthesis
Jack Umenberger · Thomas B Schön
Poster
Fast Approximate Natural Gradient Descent in a Kronecker Factored Eigenbasis
Thomas George · César Laurent · Xavier Bouthillier · Nicolas Ballas · Pascal Vincent
Poster
e-SNLI: Natural Language Inference with Natural Language Explanations
Oana-Maria Camburu · Tim Rocktäschel · Thomas Lukasiewicz · Phil Blunsom
Poster
Reinforcement Learning with Multiple Experts: A Bayesian Model Combination Approach
Mike Gimelfarb · Scott Sanner · Chi-Guhn Lee
Poster
Uncertainty-Aware Few-Shot Learning with Probabilistic Model-Agnostic Meta-Learning
Kelvin Xu · Chelsea Finn · Sergey Levine
Poster
Sanity Checks for Saliency Maps
Julius Adebayo · Been Kim · Ian Goodfellow · Justin Gilmer · Moritz Hardt
Poster
Multi-objective Maximization of Monotone Submodular Functions with Cardinality Constraint
Rajan Udwani
Poster
PAC-Bayes Tree: weighted subtrees with guarantees
Tin Nguyen · Samory Kpotufe
Poster
DAGs with NO TEARS: Continuous Optimization for Structure Learning
Xun Zheng · Bryon Aragam · Pradeep Ravikumar · Eric Xing
Poster
Implicit Bias of Gradient Descent on Linear Convolutional Networks
Suriya Gunasekar · Jason Lee · Daniel Soudry · Nati Srebro
Poster
Learning and Testing Causal Models with Interventions
Jayadev Acharya · Arnab Bhattacharyya · Constantinos Daskalakis · Saravanan Kandasamy
Poster
Discovering Feedback Codes via Deep Learning
Hyeji Kim · Yihan Jiang · Sreeram Kannan · Sewoong Oh · Pramod Viswanath
Poster
Identification and Estimation of Causal Effects from Dependent Data
Eli Sherman · Ilya Shpitser
Poster
Quantifying Linguistic Shifts: The Global Anchor Method and Its Applications
Zi Yin · Vinayak Sachidananda · Balaji Prabhakar
Poster
Gather-Scatter: Context Propagation for ConvNets
Jie Hu · Li Shen · Gang Sun · Samuel Albanie · Andrea Vedaldi
Poster
The emergence of multiple retinal cell types through efficient coding of natural movies
Stephane Deny · Jack Lindsey · Surya Ganguli · Samuel Ocko
Poster
Learning Attractor Dynamics for Generative Memory
Yan Wu · Tim Lillicrap · Gregory Wayne · Karol Gregor
Poster
Assessing the Scalability of Biologically-Motivated Deep Learning Algorithms and Architectures
Sergey Bartunov · Adam Santoro · Blake Richards · Geoffrey E Hinton · Tim Lillicrap
Poster
Statistical and Computational Trade-Offs in Kernel K-Means
Daniele Calandriello · Lorenzo Rosasco
Poster
Co-regularized Alignment for Unsupervised Domain Adaptation
Abhishek Kumar · Prasanna Sattigeri · kahini wadhawan · Leonid Karlinsky · Rogerio S Feris · Bill Freeman · Gregory Wornell
Poster
Hardware Conditioned Policies for Multi-Robot Transfer Learning
Tao Chen · Adithyavairavan Murali · Abhinav Gupta
Poster
Sample Complexity of Nonparametric Semi-Supervised Learning
Chen Dan · · Bryon Aragam · Pradeep Ravikumar · Eric Xing
Poster
SNIPER: Efficient Multi-Scale Training
Bharat Singh · Mahyar Najibi · Larry S Davis
Poster
The Effect of Network Width on the Performance of Large-batch Training
Lingjiao Chen · Hongyi Wang · Paraschos Koutris · Dimitris Papailiopoulos · Jinman Zhao
Poster
Representer Point Selection for Explaining Deep Neural Networks
Chih-Kuan Yeh · Joon Sik Kim · Ian En-Hsu Yen · Pradeep Ravikumar
Poster
The Importance of Sampling inMeta-Reinforcement Learning
Bradly Stadie · Ge Yang · Pieter Abbeel · Yuhuai Wu · Yan Duan · Xi Chen · Rein Houthooft · Ilya Sutskever
Poster
Confounding-Robust Policy Improvement
Angela Zhou · Nathan Kallus
Poster
Deep Dynamical Modeling and Control of Unsteady Fluid Flows
Jeremy Morton · Antony Jameson · Mykel J Kochenderfer · Freddie Witherden
Poster
Coordinate Descent with Bandit Sampling
Farnood Salehi · Patrick Thiran · Elisa Celis
Poster
The Limit Points of (Optimistic) Gradient Descent in Min-Max Optimization
Constantinos Daskalakis · Ioannis Panageas
Poster
Beyond Grids: Learning Graph Representations for Visual Recognition
Yin Li · Abhinav Gupta
Poster
PAC-Bayes bounds for stable algorithms with instance-dependent priors
Omar Rivasplata · Csaba Szepesvari · John S Shawe-Taylor · Emilio Parrado-Hernandez · Shiliang Sun
Poster
更多文章,请移步:
https://nips.cc/Conferences/2018/Schedule?nsukey=8JsvAskSCbOUv0wSecIT2IgFjexFhUcXnAZBSk0TCEJ%2FIaAEyM88ar%2FXzvo696hHHMErnN%2ByPRZQm1HHvV6Bku6nlKw%2B4yVcD%2F%2FzYYBWyvwk8UtBxmN88evjgsqMJbSfO02CXpFec7CwGdUsFjmCp434iMmL1nI15gRQr8NzwLNFVHtKl1OVa73cPWgwhozLJPPjl8%2B%2BoxsQO8zGCZkQCg%3D%3D
-END-
专 · 知
人工智能领域26个主题知识资料全集获取与加入专知人工智能服务群: 欢迎微信扫一扫加入专知人工智能知识星球群,获取专业知识教程视频资料和与专家交流咨询!
请PC登录www.zhuanzhi.ai或者点击阅读原文,注册登录专知,获取更多AI知识资料!
请加专知小助手微信(扫一扫如下二维码添加),加入专知主题群(请备注主题类型:AI、NLP、CV、 KG等)交流~
请关注专知公众号,获取人工智能的专业知识!
点击“阅读原文”,使用专知