【导读】1月26日,Mybridge发布一篇看2017年热门网文入门机器学习应用开发。作者总结了2017年1月到12月近2万篇文章,从中选取前50名分享给大家。其领域涵盖了:图像处理、风格迁移、图像分类、人脸识别、目标检测、自动驾驶等。如果你是机器学习从业者或专业人员,那么本文绝对不可错过。如果你刚入门机器学习,本文也推荐了相关链接供您学习。本文提供的论文排名相对权威,其中有些论文可能您早已耳熟能详,有些却很少听闻,但这些工作都在机器学习领域做出了卓越贡献,值得大家一读!专知内容组编辑整理。
Learn to Build a Machine Learning Application from Top Articles of 2017
我们比较了从2017年1月到12月近2万篇关于构建机器学习应用程序的文章,从中选取其中前50名,分享给大家。
“在硅谷雇佣一个机器学习工程师或数据科学家就像雇用一个职业运动员一样。这就是它的要求(这就是需求决定的)“ - 纽约时报图:
由于科技巨头的高需求,数据科学家被比作职业运动员
机器学习已经成为当今劳动力需求最高的技能之一,美国的平均工资达到了134,472美元(来源:https://www.indeed.com/salaries/Machine-Learning-Engineer-Salaries)。
我们相信,向该领域中实践经验丰富的数据科学家学习,是提升你职业生涯的一个好方法。这个目录是为了让你更轻松地学习,因为它收纳了2017年发表的最有用的文章,那里经验丰富的数据科学家分享了他们在构建和发布机器学习应用程序时遇到的经验教训。
本文推荐的文章面向机器学习专业人士,因此我们非常重视文章的“质量”,确保你阅读的每一篇文章都是非常好的。本文排名也是相对权威的。从20000篇文章中只选出了50篇(占比是0.25%)。Mybridge AI一直在不断更新,它根据分享的总数量和阅读时间以及我们自己的机器学习算法对文章进行排名。
这个目录有15个关键的主题,如下所示。
如果你是一个初学者,刚入门,我们推荐以下课程,
A) Gaming AI
在Unity中建立人工智能应用的新手指南[5,041推荐,4.7/5星]
http://bit.ly/2nbsc5n
B)计算机视觉
深度学习和计算机视觉A-Z™:学习OpenCV,SSD和GAN并创建图像识别应用程序。[8,161推荐,4.5/5颗星]
http://bit.ly/2naZ4vg
如果你正在寻找开源项目,推荐以下文章,
年度机器学习项目(平均3,558⭐️):
请参阅
https://medium.mybridge.co/30-amazing-machine-learning-projects-for-the-past-year-v-2018-b853b8621ac7
(点击下面的数字查看文章,这些数字不是排名顺序)如果你喜欢纯文字版本:请查看Github
https://goo.gl/DJtDvY
▌<图像处理>
No 1
高分辨率图像合成与条件GAN的语义操作。由NVIDIA AI和UC Berkeley提供
https://goo.gl/LT78cj
No 2
使用深度学习创建具有专业水平的照片。由谷歌研究部的Hui Fang提供
https://research.googleblog.com/2017/07/using-deep-learning-to-create.html?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
No 3
使用OpenCV(Python)的高动态范围(HDR)成像。感谢Satya Mallick
https://www.learnopencv.com/high-dynamic-range-hdr-imaging-using-opencv-cpp-python?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
▌<风格迁移>(style transfer)
No 4
通过深层图像类比进行视觉属性转移。
https://arxiv.org/abs/1705.01088?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
No 5
Deep Photo Style Transfer:一种深度学习的方法,可以处理大量的图像,同时忠实地传递参考风格。
https://arxiv.org/abs/1703.07511?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
No 6
Deep Image Prior:超分辨率,修补,去噪,无需学习数据集和预训练网络。与学习方法相比较的结果。由Dmitry Ulyanov提供
https://dmitryulyanov.github.io/deep_image_prior?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
▌<图像分类>
No 7
Feature Visualization(特征可视化):神经网络如何提升对图像的理解。感谢Google Brain的Chris Olah和Ludwig Schubert
https://distill.pub/2017/feature-visualization?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
No 8
神经网络图像分类的初学者指南[Github上的4481颗星]。由Mozilla Firefox的David Humphrey提供
https://github.com/humphd/have-fun-with-machine-learning?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
No 9
深度学习背景去除。由Gidi Shperber提供
https://medium.com/towards-data-science/background-removal-with-deep-learning-c4f2104b3157?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
▌<人脸识别>
No 10
基于Direct Volumetric CNN回归的单幅图像大姿态三维重建。感谢Aaron Jackson
https://goo.gl/bGS3Cd
No 11
用OpenCV,Python和dlib进行眼睛眨眼检测。由Adrian Rosebrock提供
http://www.pyimagesearch.com/2017/04/24/eye-blink-detection-opencv-python-dlib?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
No 12
运用Python进行人脸活动检测。由Kirk Kaiser提供
https://www.makeartwithpython.com/blog/deal-with-it-generator-face-recognition?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
▌<视频稳定技术(Video Stabilization)>
No 13
基于Pixel 2 and Pixel 2 XL的融合视频稳定技术。谷歌研究部的Chia-Kai Liang提供
https://research.googleblog.com/2017/11/fused-video-stabilization-on-pixel-2.html?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
▌<目标检测>
No 14
在HBO的硅谷中如何用移动端的TensorFlow和Keras建立“Not Hotdog”。由Tim Anglade提供。
https://hackernoon.com/how-hbos-silicon-valley-built-not-hotdog-with-mobile-tensorflow-keras-react-native-ef03260747f3?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
No 15
目标检测:深度学习的概述。由Tryolabs提供
https://tryolabs.com/blog/2017/08/30/object-detection-an-overview-in-the-age-of-deep-learning?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
No 16
如何使用TensorFlow的目标检测器API来训练你自己的目标检测器。由Dat Tran提供
https://medium.com/towards-data-science/how-to-train-your-own-object-detector-with-tensorflows-object-detector-api-bec72ecfe1d9?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
No 17
基于深度学习和OpenCV的实时目标检测。
http://www.pyimagesearch.com/2017/09/18/real-time-object-detection-with-deep-learning-and-opencv?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
▌<自动驾驶汽车>
No 18
用Python实现自动驾驶Grand Theft Auto V:介绍[第一部分]。由Sentdex提供
https://www.youtube.com/watch?v=ks4MPfMq8aQ?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
No 19
通过深度学习识别交通灯:我如何在10周内学会了深度学习,并赢得了5,000美元。由David Brailovsky和freeCodeCamp提供
https://medium.freecodecamp.com/recognizing-traffic-lights-with-deep-learning-23dae23287cc?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
▌<推荐系统>
No 20
Spotify的每周的发现:机器学习如何发现您的新音乐。由Sophia Ciocca和Hackernoon提供
https://goo.gl/bSD9wE
No 21
艺术作品个性化。由Netflix技术博客提供
https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
▌<游戏Al>
No 22
MariFlow – 基于循环神经网络的自动驾驶(马里奥卡丁车)。由SethBling提供
https://www.youtube.com/watch?v=Ipi40cb_RsI?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
No 23
OpenAI Baselines:DQN。重现强化学习算法,其性能与公布的结果一致。由OpenAI提供。
https://blog.openai.com/openai-baselines-dqn?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
No 24
Dota 2中的强化学习[第二部分]。由OpenAI提供。
https://blog.openai.com/more-on-dota-2?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
No 25
创建一个AI DOOM bot
https://www.codelitt.com/blog/doom-ai?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
No 26
用于角色控制的相位功能神经网络。由Daniel Holden提供
http://theorangeduck.com/page/phase-functioned-neural-networks-character-control?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
No 27
游戏模仿:将深度有监督卷积网络用于快速视频游戏。斯坦福大学提供
https://arxiv.org/abs/1702.05663?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
No 28
介绍:Unity机器学习智能体。由Unity的Arthur Juliani提供
https://blogs.unity3d.com/2017/09/19/introducing-unity-machine-learning-agents?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
▌<象棋 Al>
No 29
用通用强化学习算法自学习象棋和将棋。感谢Deepmind提供。
https://arxiv.org/abs/1712.01815?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
No 30
AlphaGo Zero:从零开始学习。由DeepMind提供。
https://goo.gl/nfKUMo
No 31
DeepMind的AlphaGo Zero如何工作?由Siraj Raval提供
https://www.youtube.com/watch?v=vC66XFoN4DE?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
No 32
一步一步的指导,建立一个简单的国际象棋AI应用。由Lauri Hartikka提供
https://medium.freecodecamp.com/simple-chess-ai-step-by-step-1d55a9266977?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
▌<医学中的AI>
No 33
CheXNet:运用深度学习进行胸部X射线检测,实现放射科专家级肺炎检测效果。感谢Andrew Ng和斯坦福机器学习小组的其他成员。
https://stanfordmlgroup.github.io/projects/chexnet?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
No 34
你能提高肺癌检测率吗?Data Science Bowl 2017年第二名的解决方案。
http://juliandewit.github.io/kaggle-ndsb2017?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
No 35
深度学习改善缓和治疗。感谢Andrew Ng和斯坦福机器学习小组的其他成员。
https://stanfordmlgroup.github.io/projects/improving-palliative-care?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
No 36
用深度学习进行心脏疾病诊断。由Chuck-Hou Yee提供
https://blog.insightdatascience.com/heart-disease-diagnosis-with-deep-learning-c2d92c27e730?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
▌<语音中的AI>
No 37
Tacotron:完全端到端的文本-语音合成模型 - Google的数据科学家提供。
https://arxiv.org/abs/1703.10135?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
No 38
用CTC进行序列建模。由斯坦福大学的Awni Hannun博士提供
https://distill.pub/2017/ctc/?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
No 39
Deep Voice:实时文本到语音转换 - 百度硅谷人工智能实验室。
https://arxiv.org/abs/1702.07825?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
No 40
深度学习用于Siri : On-device Deep Mixture Density Networks for Hybrid Unit Selection Synthesis — Apple.。
https://goo.gl/8iDha4
▌<音乐中的AI>
No 41
计算机演变产生baroque音乐!由Cary Huang提供
https://www.youtube.com/watch?v=SacogDL_4JU?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
No 42
使用WaveNets制作自己的音乐:制作一个音乐合成器。由Jesse Engelberg提供。
https://magenta.tensorflow.org/nsynth-instrument?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
▌<自然语言处理>
No 43
学习沟通:Agents开发他们自己的语言 - OpenAI Research。
https://openai.com/blog/learning-to-communicate?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
No 44
大图机器学习:用神经网络和TensorFlow分类文本。感谢Déborah Mesquita提供
https://medium.freecodecamp.com/big-picture-machine-learning-classifying-text-with-neural-networks-and-tensorflow-d94036ac2274?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
No 45
神经机器翻译的新方法 - Facebook AI Research。
https://code.facebook.com/posts/1978007565818999/a-novel-approach-to-neural-machine-translation?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
No 46
《How to make a racist AI without really trying》不试试怎么知道可以创建一个有情感的AI智能体
https://blog.conceptnet.io/2017/07/13/how-to-make-a-racist-ai-without-really-trying?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
▌<预测>
No 47
使用机器学习预测房屋在Airbnb上的价值。由Aribnb的Robert Chang提供
https://medium.com/airbnb-engineering/using-machine-learning-to-predict-value-of-homes-on-airbnb-9272d3d4739d?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
No 48
利用神经网络工程的不确定性估计,对Uber时间序列进行预测
https://eng.uber.com/neural-networks-uncertainty-estimation?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
No 49
使用机器学习使泊车更容易。
https://research.googleblog.com/2017/02/using-machine-learning-to-predict.html?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
No 50
如何轻松预测股票价格 - 深度学习介绍#7。
https://goo.gl/QpvfsX
原文链接:
https://medium.mybridge.co/learn-to-build-a-machine-learning-application-from-top-articles-of-2017-cdd5638453fc
-END-
专 · 知
人工智能领域主题知识资料查看获取:【专知荟萃】人工智能领域26个主题知识资料全集(入门/进阶/论文/综述/视频/专家等)
请PC登录www.zhuanzhi.ai或者点击阅读原文,注册登录专知,获取更多AI知识资料!
请扫一扫如下二维码关注我们的公众号,获取人工智能的专业知识!
请加专知小助手微信(Rancho_Fang),加入专知主题人工智能群交流!
点击“阅读原文”,使用专知