UAI 2018大会论文接受列表新鲜出炉

【导读】UAI大会全称为Conference on Uncertainty in Artificial Intelligence,立足于不确定性人工智能领域,主要侧重于不确定性人工智能的知识表达、获取以及推理等问题。本文整理了2018年大会的接受论文列表,方便读者查阅。



详细录用名单日前已经公布,可参见:

http://auai.org/uai2018/accepted.php


ID: 3

Testing for Conditional Mean Independence with Covariates through Martingale Difference Divergence

Ze Jin, Xiaohan Yan, David S. Matteson 



ID: 14

Analysis of Thompson Sampling for Graphical Bandits Without the Graphs

Fang Liu, Zizhan Zheng, Ness Shroff 



ID: 17

Structured nonlinear variable selection

Magda Gregorova, Alexandros Kalousis, Stephane Marchand-Maillet



ID: 23

Identification of Strong Edges in AMP Chain Graphs

Jose M. Peña 



ID: 32

A Univariate Bound of Area Under ROC

Siwei Lyu, Yiming Ying 



ID: 34

Efficient Bayesian Inference for a Gaussian Process Density Model

Christian Donner, Manfred Opper 



ID: 35

Comparing Direct and Indirect Temporal-Difference Methods for Estimating the Variance of the Return

Craig Sherstan, Dylan R. Ashley, Brendan Bennett, Kenny Young, Adam White, Martha White, Richard S. Sutton 



ID: 37

How well does your sampler really work?

Ryan Turner, Brady Neal 



ID: 39

Learning Deep Hidden Nonlinear Dynamics from Aggregate Data

Yisen Wang, Bo Dai, Lingkai Kong, Sarah Monazam Erfani, James Bailey, Hongyuan Zha 



ID: 40

Revisiting differentially private linear regression: optimal and adaptive prediction & estimation in unbounded domain

Yu-Xiang Wang 



ID: 42

Imaginary Kinematics

Sabina Marchetti, Alessandro Antonucci 



ID: 43

From Deterministic ODEs to Dynamic Structural Causal Models

Paul K. Rubenstein, Stephan Bongers, Joris M. Mooij, Bernhard Schoelkopf 



ID: 45

Frank-Wolfe Optimization for Symmetric-NMF under Simplicial Constraint

Han Zhao, Geoff Gordon 



ID: 50

Learning Time Series Segmentation Models from Temporally Imprecise Labels

Roy Adams, Benjamin M. Marlin 



ID: 53

Multi-Target Optimisation via Bayesian Optimisation and Linear Programming

Alistair Shilton, Santu Rana, Sunil Gupta, Svetha Venkatesh 



ID: 54

Stochastic Learning for Sparse Discrete Markov Random Fields with Controlled Gradient Approximation Error

Sinong Geng, Zhaobin Kuang, Jie Liu, Stephen Wright, David Page 



ID: 57

Active Information Acquisition for Linear Optimization

Shuran Zheng, Bo Waggoner, Yang Liu, Yiling Chen 



ID: 61

Transferable Meta Learning Across Domains

Bingyi Kang, Jiashi Feng 



ID: 65

Learning the Causal Structure of Copula Models with Latent Variables

Ruifei Cui, Perry Groot, Moritz Schauer, Tom Heskes 



ID: 68

$f_{BGD}$: Learning Embeddings From Positive Unlabeled Data with BGD

Fajie YUAN, Xin Xin, Xiangnan He, Guibing Guo, Weinan Zhang, CHUA Tat-Seng, Joemon Jose 



ID: 70

Soft-Robust Actor-Critic Policy-Gradient

Esther Derman, Daniel J Mankowitz, Timothy A Mann, Shie Mannor



ID: 71

Constant Step Size Stochastic Gradient Descent for Probabilistic Modeling

Dmitry Babichev, Francis Bach 



ID: 75

Discrete Sampling using Semigradient-based Product Mixtures

Alkis Gotovos, Hamed Hassani, Andreas Krause, Stefanie Jegelka 



ID: 83

Combining Knowledge and Reasoning through Probabilistic Soft Logic for Image Puzzle Solving

Somak Aditya, Yezhou Yang, Chitta Baral, Yiannis Aloimonos 



ID: 92

Nesting Probabilistic Programs

Tom Rainforth 



ID: 99

Scalable Algorithms for Learning High-Dimensional Linear Mixed Models

Zilong Tan, Kimberly Roche, Xiang Zhou, Sayan Mukherjee 



ID: 117

Constraint-based Causal Discovery for Non-Linear Structural Causal Models with Cycles and Latent Confounders

Patrick Forré, Joris M. Mooij 



ID: 118

Marginal Weighted Maximum Log-likelihood for Efficient Learning of Perturb-and-Map models

Tatiana Shpakova, Francis Bach, Anton Osokin 



ID: 119

Variational Inference for Gaussian Processes with Panel Count Data

Hongyi Ding, Young Lee, Issei Sato, Masashi Sugiyama 



ID: 123

A unified probabilistic model for learning latent factors and their connectivities from high-dimensional data

Ricardo Pio Monti, Aapo Hyvarinen 



ID: 125

Improved Stochastic Trace Estimation using Mutually Unbiased Bases

JK Fitzsimons, MA Osborne, SJ Roberts, JF Fitzsimons 



ID: 128

Unsupervised Multi-view Nonlinear Graph Embedding

Jiaming Huang, Zhao Li, Vincent W. Zheng, Wen Wen, Yifan Yang, Yuanmi Chen 



ID: 132

Graph-based Clustering under Differential Privacy

Rafael Pinot, Anne Morvan, Florian Yger, Cedric Gouy-Pailler, Jamal Atif



ID: 139

GaAN: Gated Attention Networks for Learning on Large and Spatiotemporal Graphs

Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King, Dit-yan Yeung



ID: 142

Causal Learning for Partially Observed Stochastic Dynamical Systems

Søren Wengel Mogensen, Daniel Malinsky, Niels Richard Hansen 



ID: 148

Variational zero-inflated Gaussian processes with sparse kernels

Pashupati Hegde, Markus Heinonen, Samuel Kaski 



ID: 149

KBlrn: End-to-End Learning of Knowledge Base Representations with Latent, Relational, and Numerical Features

Alberto Garcia-Duran, Mathias Niepert 



ID: 151

Probabilistic AND-OR Attribute Grouping for Zero-Shot Learning

Yuval Atzmon, Gal Chechik 



ID: 156

Sylvester Normalizing Flows for Variational Inference

Rianne van den Berg, Leonard Hasenclever, Jakub Tomczak, Max Welling



ID: 163

Holistic Representations for Memorization and Inference

Yunpu Ma, Marcel Hildebrandt, Volker Tresp, Stephan Baier 



ID: 167

Simple and practical algorithms for $\ell_p$-norm low-rank approximation

Anastasios Kyrillidis 



ID: 169

Quantile-Regret Minimisation in Infinitely Many-Armed Bandits

Arghya Roy Chaudhuri, Shivaram Kalyanakrishnan 



ID: 171

Variational Inference for Gaussian Process Models for Survival Analysis

Minyoung Kim, Vladimir Pavlovic 



ID: 179

A Cost-Effective Framework for Preference Elicitation and Aggregation

Zhibing Zhao, Haoming Li, Junming Wang, Jeffrey O. Kephart, Nicholas Mattei, Hui Su, Lirong Xia 



ID: 181

Incremental Learning-to-Learn with Statistical Guarantees

Giulia Denevi, Carlo Ciliberto, Dimitris Stamos, Massimiliano Pontil 



ID: 182

Bandits with Side Observations: Bounded vs. Logarithmic Regret

Rémy Degenne, Evrard Garcelon, Vianney Perchet 



ID: 185

Sampling and Inference for Beta Neutral-to-the-Left Models of Sparse Networks

Benjamin Bloem-Reddy, Adam Foster, Emile Mathieu, Yee Whye Teh



ID: 186

Clustered Fused Graphical Lasso

Yizhi Zhu, Oluwasanmi Koyejo 



ID: 191

Unsupervised Learning of Latent Physical Properties Using Perception-Prediction Networks

David Zheng, Vinson Luo, Jiajun Wu, Joshua Tenenbaum 



ID: 192

Subsampled Stochastic Variance-Reduced Gradient Langevin Dynamics

Difan Zou, Pan Xu, Quanquan Gu 



ID: 195

Finite-State Controllers of POMDPs using Parameter Synthesis

Sebastian Junges, Nils Jansen, Ralf Wimmer, Tim Quatmann, Leonore Winterer, Joost-Pieter Katoen, Bernd Becker 



ID: 198

Identification of Personalized Effects Associated With Causal Pathways

Ilya Shpitser, Eli Sherman 



ID: 201

Fast Counting in Machine Learning Applications

Subhadeep Karan, Matthew Eichhorn, Blake Hurlburt, Grant Iraci, Jaroslaw Zola 



ID: 204

A Dual Approach to Scalable Verification of Deep Networks

Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy Mann, Pushmeet Kohli 



ID: 207

Understanding Measures of Uncertainty for Adversarial Example Detection

Lewis Smith, Yarin Gal 



ID: 208

Causal Discovery in the Presence of Measurement Error

Tineke Blom, Anna Klimovskaia, Sara Magliacane, Joris M. Mooij 



ID: 212

IDK Cascades: Fast Deep Learning by Learning not to Overthink

Xin Wang, Yujia Luo, Daniel Crankshaw, Alexey Tumanov, Fisher Yu, Joseph E. Gonzalez 



ID: 217

Learning Fast Optimizers for Contextual Stochastic Integer Programs

Vinod Nair, Dj Dvijotham, Iain Dunning, Oriol Vinyals 



ID: 221

Differential Analysis of Directed Networks

Min Ren, Dabao Zhang 



ID: 225

Sparse-Matrix Belief Propagation

Reid Bixler, Bert Huang 



ID: 233

Sequential Learning under Probabilistic Constraints

Amirhossein Meisami, Henry Lam, Chen Dong, Abhishek Pani 



ID: 234

Abstraction Sampling in Graphical Models

Filjor Broka, Rina Dechter, Alexander Ihler, Kalev Kask 



ID: 235

Meta Reinforcement Learning with Latent Variable Gaussian Processes

Steindor Saemundsson, Katja Hofmann, Marc Peter Deisenroth 



ID: 236

Non-Parametric Path Analysis in Structural Causal Models

Junzhe Zhang, Elias Bareinboim 



ID: 238

Stochastic Layer-Wise Precision in Deep Neural Networks

Griffin Lacey, Graham W. Taylor, Shawki Areibi 



ID: 239

Estimation of Personalized Effects Associated With Causal Pathways

Razieh Nabi, Phyllis Kanki, Ilya Shpitser 



ID: 245

High-confidence error estimates for learned value functions

Touqir Sajed, Wesley Chung, Martha White 



ID: 247

Combinatorial Bandits for Incentivizing Agents with Dynamic Preferences

Tanner Fiez, Shreyas Sekar, Liyuan Zheng, Lillian Ratliff 



ID: 250

Sparse Multi-Prototype Classification

Vikas K. Garg, Lin Xiao, Ofer Dekel 



ID: 252

Fast Stochastic Quadrature for Approximate Maximum-Likelihood Estimation

Nico Piatkowski, Katharina Morik 



ID: 253

Finite-sample Bounds for Marginal MAP

Qi Lou, Rina Dechter, Alexander Ihler 



ID: 255

Acyclic Linear SEMs Obey the Nested Markov Property

Ilya Shpitser, Robin Evans, Thomas S. Richardson 



ID: 263

A Unified Particle-Optimization Framework for Scalable Bayesian Sampling

Changyou Chen, Ruiyi Zhang, Wenlin Wang, Bai Li, Liqun Chen 



ID: 265

An Efficient Quantile Spatial Scan Statistic for Finding Unusual Regions in Continuous Spatial Data with Covariates

Travis Moore, Weng-Keen Wong 



ID: 268

Stable Gradient Descent

Yingxue Zhou, Sheng Chen, Arindam Banerjee 



ID: 269

Learning to select computations

Frederick Callaway, Sayan Gul, Paul M. Krueger, Thomas L. Griffiths, Falk Lieder 



ID: 282

Per-decision Multi-step Temporal Difference Learning with Control Variates

Kristopher De Asis, Richard S. Sutton 



ID: 289

The Indian Buffet Hawkes Process to Model Evolving Latent Influences

Xi Tan, Vinayak Rao, Jennifer Neville 



ID: 290

Battle of Bandits

Aadirupa Saha, Aditya Gopalan 



ID: 291

Adaptive Stochastic Dual Coordinate Ascent for Conditional Random Fields

Rémi Le Priol, Alexandre Piché, Simon Lacoste-Julien 



ID: 292

Adaptive Stratified Sampling for Precision-Recall Estimation

Ashish Sabharwal, Yexiang Xue 



ID: 295

Fast Kernel Approximations for Latent Force Models and Convolved Multiple-Output Gaussian processes

Cristian Guarnizo, Mauricio Álvarez 



ID: 302

Fast Policy Learning through Imitation and Reinforcement

Ching-An Cheng, Xinyan Yan, Nolan Wagener, Byron Boots 



ID: 309

Hyperspherical Variational Auto-Encoders

Tim Davidson, Luca Falorsi, Nicola De Cao, Thomas Kipf, Jakub M. Tomczak 



ID: 312

Dissociation-Based Oblivious Bounds for Weighted Model Counting

Li Chou, Wolfgang Gatterbauer, Vibhav Gogate 



ID: 313

Averaging Weights Leads to Wider Optima and Better Generalization

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, Andrew Gordon Wilson 



ID: 317

Block-Value Symmetries in Probabilistic Graphical Models

Gagan Madan, Ankit Anand, Mausam, Parag Singla 



ID: 320

Max-margin learning with the Bayes factor

Rahul G. Krishnan, Arjun Khandelwal, Rajesh Ranganath, David Sontag



ID: 321

Densified Winner Take All (WTA) Hashing for Sparse Datasets

Beidi Chen, Anshumali Shrivastava 



ID: 322

Lifted Marginal MAP Inference

Vishal Sharma, Noman Ahmed Sheikh, Happy Mittal, Vibhav Gogate, Parag Singla 



ID: 325

PAC-Reasoning in Relational Domains

Ondrej Kuzelka, Yuyi Wang, Jesse Davis, Steven Schockaert 



ID: 332

Pure Exploration of Multi-Armed Bandits with Heavy-Tailed Payoffs

Xiaotian Yu, Han Shao, Michael R. Lyu, Irwin King 



ID: 334

Counterfactual Normalization: Proactively Addressing Dataset Shift Using Causal Mechanisms

Adarsh Subbaswamy, Suchi Saria 



ID: 342

Decentralized Planning for Non-dedicated Agent Teams with Submodular Rewards in Uncertain Environments

Pritee Agrawal, Pradeep Varakantham, William Yeoh 



ID: 343

A Forest Mixture Bound for Block-Free Parallel Inference

Neal Lawton, Greg Ver Steeg, Aram Galstyan 



ID: 346

Causal Identification under Markov Equivalence

Amin Jaber, Jiji Zhang, Elias Bareinboim 



ID: 351

The Variational Homoencoder: Learning to learn high capacity generative models from few examples

Luke B. Hewitt, Maxwell I. Nye, Andreea Gane, Tommi Jaakkola, Joshua B. Tenenbaum 



ID: 354

Probabilistic Collaborative Representation Learning for Personalized Item Recommendation

Aghiles Salah, Hady W. Lauw 



ID: 356

Reforming Generative Autoencoders via Goodness-of-Fit Hypothesis Testing

Aaron Palmer, Dipak Dey, Jinbo Bi 



ID: 359

Towards Flatter Loss Surface via Nonmonotonic Learning Rate Scheduling

Sihyeon Seong, Yegang Lee, Youngwook Kee, Dongyoon Han, Junmo Kim



ID: 361

A Lagrangian Perspective on Latent Variable Generative Models

Shengjia Zhao, Jiaming Song, Stefano Ermon 



ID: 362

Bayesian optimization and attribute adjustment

Stephan Eismann, Daniel Levy, Rui Shu, Stefan Bartzsch, Stefano Ermon



ID: 367

Join Graph Decomposition Bounds for Influence Diagrams

Junkyu Lee, Alexander Ihler, Rina Dechter 



ID: 372

Causal Discovery with Linear Non-Gaussian Models under Measurement Error: Structural Identifiability Results

Kun Zhang, Mingming Gong, Joseph Ramsey, Kayhan Batmanghelich, Peter Spirtes, Clark Glymour 


-END-

专 · 知


人工智能领域主题知识资料查看与加入专知人工智能服务群

【专知AI服务计划】专知AI知识技术服务会员群加入人工智能领域26个主题知识资料全集获取欢迎微信扫一扫加入专知人工智能知识星球群,获取专业知识教程视频资料和与专家交流咨询


请PC登录www.zhuanzhi.ai或者点击阅读原文,注册登录专知,获取更多AI知识资料

请加专知小助手微信(扫一扫如下二维码添加),加入专知主题群(请备注主题类型:AI、NLP、CV、 KG等)交流~



关注专知公众号,获取人工智能的专业知识!

点击“阅读原文”,使用专知

展开全文
Top
微信扫码咨询专知VIP会员