【导读】UAI大会全称为Conference on Uncertainty in Artificial Intelligence,立足于不确定性人工智能领域,主要侧重于不确定性人工智能的知识表达、获取以及推理等问题。本文整理了2018年大会的接受论文列表,方便读者查阅。
详细录用名单日前已经公布,可参见:
http://auai.org/uai2018/accepted.php
ID: 3
Testing for Conditional Mean Independence with Covariates through Martingale Difference Divergence
Ze Jin, Xiaohan Yan, David S. Matteson
ID: 14
Analysis of Thompson Sampling for Graphical Bandits Without the Graphs
Fang Liu, Zizhan Zheng, Ness Shroff
ID: 17
Structured nonlinear variable selection
Magda Gregorova, Alexandros Kalousis, Stephane Marchand-Maillet
ID: 23
Identification of Strong Edges in AMP Chain Graphs
Jose M. Peña
ID: 32
A Univariate Bound of Area Under ROC
Siwei Lyu, Yiming Ying
ID: 34
Efficient Bayesian Inference for a Gaussian Process Density Model
Christian Donner, Manfred Opper
ID: 35
Comparing Direct and Indirect Temporal-Difference Methods for Estimating the Variance of the Return
Craig Sherstan, Dylan R. Ashley, Brendan Bennett, Kenny Young, Adam White, Martha White, Richard S. Sutton
ID: 37
How well does your sampler really work?
Ryan Turner, Brady Neal
ID: 39
Learning Deep Hidden Nonlinear Dynamics from Aggregate Data
Yisen Wang, Bo Dai, Lingkai Kong, Sarah Monazam Erfani, James Bailey, Hongyuan Zha
ID: 40
Revisiting differentially private linear regression: optimal and adaptive prediction & estimation in unbounded domain
Yu-Xiang Wang
ID: 42
Imaginary Kinematics
Sabina Marchetti, Alessandro Antonucci
ID: 43
From Deterministic ODEs to Dynamic Structural Causal Models
Paul K. Rubenstein, Stephan Bongers, Joris M. Mooij, Bernhard Schoelkopf
ID: 45
Frank-Wolfe Optimization for Symmetric-NMF under Simplicial Constraint
Han Zhao, Geoff Gordon
ID: 50
Learning Time Series Segmentation Models from Temporally Imprecise Labels
Roy Adams, Benjamin M. Marlin
ID: 53
Multi-Target Optimisation via Bayesian Optimisation and Linear Programming
Alistair Shilton, Santu Rana, Sunil Gupta, Svetha Venkatesh
ID: 54
Stochastic Learning for Sparse Discrete Markov Random Fields with Controlled Gradient Approximation Error
Sinong Geng, Zhaobin Kuang, Jie Liu, Stephen Wright, David Page
ID: 57
Active Information Acquisition for Linear Optimization
Shuran Zheng, Bo Waggoner, Yang Liu, Yiling Chen
ID: 61
Transferable Meta Learning Across Domains
Bingyi Kang, Jiashi Feng
ID: 65
Learning the Causal Structure of Copula Models with Latent Variables
Ruifei Cui, Perry Groot, Moritz Schauer, Tom Heskes
ID: 68
$f_{BGD}$: Learning Embeddings From Positive Unlabeled Data with BGD
Fajie YUAN, Xin Xin, Xiangnan He, Guibing Guo, Weinan Zhang, CHUA Tat-Seng, Joemon Jose
ID: 70
Soft-Robust Actor-Critic Policy-Gradient
Esther Derman, Daniel J Mankowitz, Timothy A Mann, Shie Mannor
ID: 71
Constant Step Size Stochastic Gradient Descent for Probabilistic Modeling
Dmitry Babichev, Francis Bach
ID: 75
Discrete Sampling using Semigradient-based Product Mixtures
Alkis Gotovos, Hamed Hassani, Andreas Krause, Stefanie Jegelka
ID: 83
Combining Knowledge and Reasoning through Probabilistic Soft Logic for Image Puzzle Solving
Somak Aditya, Yezhou Yang, Chitta Baral, Yiannis Aloimonos
ID: 92
Nesting Probabilistic Programs
Tom Rainforth
ID: 99
Scalable Algorithms for Learning High-Dimensional Linear Mixed Models
Zilong Tan, Kimberly Roche, Xiang Zhou, Sayan Mukherjee
ID: 117
Constraint-based Causal Discovery for Non-Linear Structural Causal Models with Cycles and Latent Confounders
Patrick Forré, Joris M. Mooij
ID: 118
Marginal Weighted Maximum Log-likelihood for Efficient Learning of Perturb-and-Map models
Tatiana Shpakova, Francis Bach, Anton Osokin
ID: 119
Variational Inference for Gaussian Processes with Panel Count Data
Hongyi Ding, Young Lee, Issei Sato, Masashi Sugiyama
ID: 123
A unified probabilistic model for learning latent factors and their connectivities from high-dimensional data
Ricardo Pio Monti, Aapo Hyvarinen
ID: 125
Improved Stochastic Trace Estimation using Mutually Unbiased Bases
JK Fitzsimons, MA Osborne, SJ Roberts, JF Fitzsimons
ID: 128
Unsupervised Multi-view Nonlinear Graph Embedding
Jiaming Huang, Zhao Li, Vincent W. Zheng, Wen Wen, Yifan Yang, Yuanmi Chen
ID: 132
Graph-based Clustering under Differential Privacy
Rafael Pinot, Anne Morvan, Florian Yger, Cedric Gouy-Pailler, Jamal Atif
ID: 139
GaAN: Gated Attention Networks for Learning on Large and Spatiotemporal Graphs
Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King, Dit-yan Yeung
ID: 142
Causal Learning for Partially Observed Stochastic Dynamical Systems
Søren Wengel Mogensen, Daniel Malinsky, Niels Richard Hansen
ID: 148
Variational zero-inflated Gaussian processes with sparse kernels
Pashupati Hegde, Markus Heinonen, Samuel Kaski
ID: 149
KBlrn: End-to-End Learning of Knowledge Base Representations with Latent, Relational, and Numerical Features
Alberto Garcia-Duran, Mathias Niepert
ID: 151
Probabilistic AND-OR Attribute Grouping for Zero-Shot Learning
Yuval Atzmon, Gal Chechik
ID: 156
Sylvester Normalizing Flows for Variational Inference
Rianne van den Berg, Leonard Hasenclever, Jakub Tomczak, Max Welling
ID: 163
Holistic Representations for Memorization and Inference
Yunpu Ma, Marcel Hildebrandt, Volker Tresp, Stephan Baier
ID: 167
Simple and practical algorithms for $\ell_p$-norm low-rank approximation
Anastasios Kyrillidis
ID: 169
Quantile-Regret Minimisation in Infinitely Many-Armed Bandits
Arghya Roy Chaudhuri, Shivaram Kalyanakrishnan
ID: 171
Variational Inference for Gaussian Process Models for Survival Analysis
Minyoung Kim, Vladimir Pavlovic
ID: 179
A Cost-Effective Framework for Preference Elicitation and Aggregation
Zhibing Zhao, Haoming Li, Junming Wang, Jeffrey O. Kephart, Nicholas Mattei, Hui Su, Lirong Xia
ID: 181
Incremental Learning-to-Learn with Statistical Guarantees
Giulia Denevi, Carlo Ciliberto, Dimitris Stamos, Massimiliano Pontil
ID: 182
Bandits with Side Observations: Bounded vs. Logarithmic Regret
Rémy Degenne, Evrard Garcelon, Vianney Perchet
ID: 185
Sampling and Inference for Beta Neutral-to-the-Left Models of Sparse Networks
Benjamin Bloem-Reddy, Adam Foster, Emile Mathieu, Yee Whye Teh
ID: 186
Clustered Fused Graphical Lasso
Yizhi Zhu, Oluwasanmi Koyejo
ID: 191
Unsupervised Learning of Latent Physical Properties Using Perception-Prediction Networks
David Zheng, Vinson Luo, Jiajun Wu, Joshua Tenenbaum
ID: 192
Subsampled Stochastic Variance-Reduced Gradient Langevin Dynamics
Difan Zou, Pan Xu, Quanquan Gu
ID: 195
Finite-State Controllers of POMDPs using Parameter Synthesis
Sebastian Junges, Nils Jansen, Ralf Wimmer, Tim Quatmann, Leonore Winterer, Joost-Pieter Katoen, Bernd Becker
ID: 198
Identification of Personalized Effects Associated With Causal Pathways
Ilya Shpitser, Eli Sherman
ID: 201
Fast Counting in Machine Learning Applications
Subhadeep Karan, Matthew Eichhorn, Blake Hurlburt, Grant Iraci, Jaroslaw Zola
ID: 204
A Dual Approach to Scalable Verification of Deep Networks
Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy Mann, Pushmeet Kohli
ID: 207
Understanding Measures of Uncertainty for Adversarial Example Detection
Lewis Smith, Yarin Gal
ID: 208
Causal Discovery in the Presence of Measurement Error
Tineke Blom, Anna Klimovskaia, Sara Magliacane, Joris M. Mooij
ID: 212
IDK Cascades: Fast Deep Learning by Learning not to Overthink
Xin Wang, Yujia Luo, Daniel Crankshaw, Alexey Tumanov, Fisher Yu, Joseph E. Gonzalez
ID: 217
Learning Fast Optimizers for Contextual Stochastic Integer Programs
Vinod Nair, Dj Dvijotham, Iain Dunning, Oriol Vinyals
ID: 221
Differential Analysis of Directed Networks
Min Ren, Dabao Zhang
ID: 225
Sparse-Matrix Belief Propagation
Reid Bixler, Bert Huang
ID: 233
Sequential Learning under Probabilistic Constraints
Amirhossein Meisami, Henry Lam, Chen Dong, Abhishek Pani
ID: 234
Abstraction Sampling in Graphical Models
Filjor Broka, Rina Dechter, Alexander Ihler, Kalev Kask
ID: 235
Meta Reinforcement Learning with Latent Variable Gaussian Processes
Steindor Saemundsson, Katja Hofmann, Marc Peter Deisenroth
ID: 236
Non-Parametric Path Analysis in Structural Causal Models
Junzhe Zhang, Elias Bareinboim
ID: 238
Stochastic Layer-Wise Precision in Deep Neural Networks
Griffin Lacey, Graham W. Taylor, Shawki Areibi
ID: 239
Estimation of Personalized Effects Associated With Causal Pathways
Razieh Nabi, Phyllis Kanki, Ilya Shpitser
ID: 245
High-confidence error estimates for learned value functions
Touqir Sajed, Wesley Chung, Martha White
ID: 247
Combinatorial Bandits for Incentivizing Agents with Dynamic Preferences
Tanner Fiez, Shreyas Sekar, Liyuan Zheng, Lillian Ratliff
ID: 250
Sparse Multi-Prototype Classification
Vikas K. Garg, Lin Xiao, Ofer Dekel
ID: 252
Fast Stochastic Quadrature for Approximate Maximum-Likelihood Estimation
Nico Piatkowski, Katharina Morik
ID: 253
Finite-sample Bounds for Marginal MAP
Qi Lou, Rina Dechter, Alexander Ihler
ID: 255
Acyclic Linear SEMs Obey the Nested Markov Property
Ilya Shpitser, Robin Evans, Thomas S. Richardson
ID: 263
A Unified Particle-Optimization Framework for Scalable Bayesian Sampling
Changyou Chen, Ruiyi Zhang, Wenlin Wang, Bai Li, Liqun Chen
ID: 265
An Efficient Quantile Spatial Scan Statistic for Finding Unusual Regions in Continuous Spatial Data with Covariates
Travis Moore, Weng-Keen Wong
ID: 268
Stable Gradient Descent
Yingxue Zhou, Sheng Chen, Arindam Banerjee
ID: 269
Learning to select computations
Frederick Callaway, Sayan Gul, Paul M. Krueger, Thomas L. Griffiths, Falk Lieder
ID: 282
Per-decision Multi-step Temporal Difference Learning with Control Variates
Kristopher De Asis, Richard S. Sutton
ID: 289
The Indian Buffet Hawkes Process to Model Evolving Latent Influences
Xi Tan, Vinayak Rao, Jennifer Neville
ID: 290
Battle of Bandits
Aadirupa Saha, Aditya Gopalan
ID: 291
Adaptive Stochastic Dual Coordinate Ascent for Conditional Random Fields
Rémi Le Priol, Alexandre Piché, Simon Lacoste-Julien
ID: 292
Adaptive Stratified Sampling for Precision-Recall Estimation
Ashish Sabharwal, Yexiang Xue
ID: 295
Fast Kernel Approximations for Latent Force Models and Convolved Multiple-Output Gaussian processes
Cristian Guarnizo, Mauricio Álvarez
ID: 302
Fast Policy Learning through Imitation and Reinforcement
Ching-An Cheng, Xinyan Yan, Nolan Wagener, Byron Boots
ID: 309
Hyperspherical Variational Auto-Encoders
Tim Davidson, Luca Falorsi, Nicola De Cao, Thomas Kipf, Jakub M. Tomczak
ID: 312
Dissociation-Based Oblivious Bounds for Weighted Model Counting
Li Chou, Wolfgang Gatterbauer, Vibhav Gogate
ID: 313
Averaging Weights Leads to Wider Optima and Better Generalization
Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, Andrew Gordon Wilson
ID: 317
Block-Value Symmetries in Probabilistic Graphical Models
Gagan Madan, Ankit Anand, Mausam, Parag Singla
ID: 320
Max-margin learning with the Bayes factor
Rahul G. Krishnan, Arjun Khandelwal, Rajesh Ranganath, David Sontag
ID: 321
Densified Winner Take All (WTA) Hashing for Sparse Datasets
Beidi Chen, Anshumali Shrivastava
ID: 322
Lifted Marginal MAP Inference
Vishal Sharma, Noman Ahmed Sheikh, Happy Mittal, Vibhav Gogate, Parag Singla
ID: 325
PAC-Reasoning in Relational Domains
Ondrej Kuzelka, Yuyi Wang, Jesse Davis, Steven Schockaert
ID: 332
Pure Exploration of Multi-Armed Bandits with Heavy-Tailed Payoffs
Xiaotian Yu, Han Shao, Michael R. Lyu, Irwin King
ID: 334
Counterfactual Normalization: Proactively Addressing Dataset Shift Using Causal Mechanisms
Adarsh Subbaswamy, Suchi Saria
ID: 342
Decentralized Planning for Non-dedicated Agent Teams with Submodular Rewards in Uncertain Environments
Pritee Agrawal, Pradeep Varakantham, William Yeoh
ID: 343
A Forest Mixture Bound for Block-Free Parallel Inference
Neal Lawton, Greg Ver Steeg, Aram Galstyan
ID: 346
Causal Identification under Markov Equivalence
Amin Jaber, Jiji Zhang, Elias Bareinboim
ID: 351
The Variational Homoencoder: Learning to learn high capacity generative models from few examples
Luke B. Hewitt, Maxwell I. Nye, Andreea Gane, Tommi Jaakkola, Joshua B. Tenenbaum
ID: 354
Probabilistic Collaborative Representation Learning for Personalized Item Recommendation
Aghiles Salah, Hady W. Lauw
ID: 356
Reforming Generative Autoencoders via Goodness-of-Fit Hypothesis Testing
Aaron Palmer, Dipak Dey, Jinbo Bi
ID: 359
Towards Flatter Loss Surface via Nonmonotonic Learning Rate Scheduling
Sihyeon Seong, Yegang Lee, Youngwook Kee, Dongyoon Han, Junmo Kim
ID: 361
A Lagrangian Perspective on Latent Variable Generative Models
Shengjia Zhao, Jiaming Song, Stefano Ermon
ID: 362
Bayesian optimization and attribute adjustment
Stephan Eismann, Daniel Levy, Rui Shu, Stefan Bartzsch, Stefano Ermon
ID: 367
Join Graph Decomposition Bounds for Influence Diagrams
Junkyu Lee, Alexander Ihler, Rina Dechter
ID: 372
Causal Discovery with Linear Non-Gaussian Models under Measurement Error: Structural Identifiability Results
Kun Zhang, Mingming Gong, Joseph Ramsey, Kayhan Batmanghelich, Peter Spirtes, Clark Glymour
-END-
专 · 知
人工智能领域主题知识资料查看与加入专知人工智能服务群:
【专知AI服务计划】专知AI知识技术服务会员群加入与人工智能领域26个主题知识资料全集获取。欢迎微信扫一扫加入专知人工智能知识星球群,获取专业知识教程视频资料和与专家交流咨询!
请PC登录www.zhuanzhi.ai或者点击阅读原文,注册登录专知,获取更多AI知识资料!
请加专知小助手微信(扫一扫如下二维码添加),加入专知主题群(请备注主题类型:AI、NLP、CV、 KG等)交流~
请关注专知公众号,获取人工智能的专业知识!
点击“阅读原文”,使用专知