机器学习的一个分支,它基于试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的一系列算法。

Deep Learning 深度学习 专知荟萃

白皮书/报告

  1. 《深度学习技术选型白皮书(2018年)》中国人工智能产业发展联盟,[http://www.caict.ac.cn/kxyj/qwfb/bps/201810/P020181017317431141487.pdf]
  2. 《使用 Dell EMC Isilon 实现深度学习 技术白皮书》,Dell,[https://www.delltechnologies.com/asset/zh-cn/products/storage/industry-market/h17361_wp_deep_learning_and_dell_emc_isilon.pdf]

入门学习

  1. 《一天搞懂深度学习》台大 李宏毅 300页PPT

  2. Deep Learning(深度学习)学习笔记整理系列之(1-8)

  3. 深层学习为何要“Deep”(上,下)

  4. 《神经网络与深度学习》 作者:邱锡鹏 中文图书 2017

  5. 深度学习基础 206页PPT 邱锡鹏 复旦大学 2017年8月17日

  6. 《Neural Networks and Deep Learning》 By Michael Nielsen / Aug 2017
    - 原文:[http://neuralnetworksanddeeplearning.com/index.html]

  7. 李宏毅机器学习视频和笔记。

  8. 吴恩达(AndrewNg)深度学习视频和笔记

  9. 动手学深度学习pytorch版

  10. 北京交通大学 丛润民 讲课PPT及视频《深度学习》平台课,面向硕士生,共32学时

综述

  1. LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature 521.7553 (2015): 436-444. (Three Giants' Survey)

  2. Representation Learning: A Review and New Perspectives, Yoshua Bengio, Aaron Courville, Pascal Vincent, Arxiv, 2012.

  3. Deep learning in neural networks: An overview(2015)

  4. Text summarization using unsupervised deep learning(2017 - Elsevier)

  5. 张荣,李伟平,莫同,深度学习研究综述, 信息与控制,vol 47(4),2018.

  6. Janiesch C, Zschech P, Heinrich K. Machine learning and deep learning. Electronic Markets, 2021, 31(3): 685-695.

  7. Thompson N C, Greenewald K, Lee K, et al. The computational limits of deep learning. arXiv preprint arXiv:2007.05558, 2020.

  8. Wani M A, Bhat F A, Afzal S, et al. Advances in deep learning. Springer, 2020.

  9. Zhang Z, Cui P, Zhu W. Deep learning on graphs: A survey. IEEE Transactions on Knowledge and Data Engineering, 2020.

进阶文章

Deep Belief Network(DBN)(Milestone of Deep Learning Eve)

ImageNet Evolution(Deep Learning broke out from here)

Model

Optimizations

Unsupervised Learning / Deep Generative Model

RNN / Sequence-to-Sequence Model

Neural Turing Machine

  1. Graves, Alex, Greg Wayne, and Ivo Danihelka. "Neural turing machines." arXiv preprint arXiv:1410.5401 (2014).
  2. Zaremba, Wojciech, and Ilya Sutskever. "Reinforcement learning neural Turing machines." arXiv preprint arXiv:1505.00521 362 (2015).

Deep Reinforcement Learning

Deep Transfer Learning / Lifelong Learning / especially for RL

One Shot Deep Learning

NLP(Natural Language Processing)

Object Detection

Visual Tracking

Image Caption

Machine Translation

  • Luong, Minh-Thang, et al. "Addressing the rare word problem in neural machine translation." arXiv preprint arXiv:1410.8206 (2014).

  • Sennrich, et al. "Neural Machine Translation of Rare Words with Subword Units". In arXiv preprint arXiv:1508.07909, 2015.

  • Luong, Minh-Thang, Hieu Pham, and Christopher D. Manning. "Effective approaches to attention-based neural machine translation." arXiv preprint arXiv:1508.04025 (2015).

  • Chung, et al. "A Character-Level Decoder without Explicit Segmentation for Neural Machine Translation". In arXiv preprint arXiv:1603.06147, 2016.

  • Lee, et al. "Fully Character-Level Neural Machine Translation without Explicit Segmentation". In arXiv preprint arXiv:1610.03017, 2016.

  • Wu, Schuster, Chen, Le, et al. "Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation". In arXiv preprint arXiv:1609.08144v2, 2016.

  • Surabhi Punjabi, Harish Arsikere, Sri Garimella "Language Model Bootstrapping Using Neural Machine Translation For Conversational Speech Recognition"(2019)

Robotics

  • Koutník, Jan, et al. "Evolving large-scale neural networks for vision-based reinforcement learning." Proceedings of the 15th annual conference on Genetic and evolutionary computation. ACM, 2013.
  • Levine, Sergey, et al. "End-to-end training of deep visuomotor policies." Journal of Machine Learning Research 17.39 (2016): 1-40.
  • Pinto, Lerrel, and Abhinav Gupta. "Supersizing self-supervision: Learning to grasp from 50k tries and 700 robot hours." arXiv preprint arXiv:1509.06825 (2015).
  • Levine, Sergey, et al. "Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection." arXiv preprint arXiv:1603.02199 (2016).
  • Zhu, Yuke, et al. "Target-driven Visual Navigation in Indoor Scenes using Deep Reinforcement Learning." arXiv preprint arXiv:1609.05143 (2016).
  • Yahya, Ali, et al. "Collective Robot Reinforcement Learning with Distributed Asynchronous Guided Policy Search." arXiv preprint arXiv:1610.00673 (2016).
  • Gu, Shixiang, et al. "Deep Reinforcement Learning for Robotic Manipulation." arXiv preprint arXiv:1610.00633 (2016).
  • A Rusu, M Vecerik, Thomas Rothörl, N Heess, R Pascanu, R Hadsell."Sim-to-Real Robot Learning from Pixels with Progressive Nets." arXiv preprint arXiv:1610.04286 (2016).
  • Mirowski, Piotr, et al. "Learning to navigate in complex environments." arXiv preprint arXiv:1611.03673 (2016).
  • Zehui Meng, Qi Heng Ho, Zefan Huang, Hongliang Guo, Marcelo H. Ang Jr., Daniela Rus "Online Multi-Target Tracking for Maneuvering Vehicles in Dynamic Road Context"(2019)

Object Segmentation

Medical Image Analysis

Tutorial

  1. UFLDL Tutorial 1
  2. UFLDL Tutorial 2
  1. Deep Learning for NLP (without Magic)
  1. A Deep Learning Tutorial: From Perceptrons to Deep Networks
  1. Deep Learning from the Bottom up
  1. Theano Tutorial
  1. Neural Networks for Matlab
  1. Using convolutional neural nets to detect facial keypoints tutorial
  1. Pytorch Tutorials
  1. The Best Machine Learning Tutorials On The Web
  1. VGG Convolutional Neural Networks Practical
  1. TensorFlow tutorials
  1. More TensorFlow tutorials
  1. TensorFlow Python Notebooks
  1. Keras and Lasagne Deep Learning Tutorials
  1. Classification on raw time series in TensorFlow with a LSTM RNN
  1. Using convolutional neural nets to detect facial keypoints tutorial
  1. TensorFlow-World
  1. Deep Learning NIPS’2015 Tutorial Geoff Hinton, Yoshua Bengio & Yann LeCun 深度学习三巨头共同主持

视频教程

Courses

  1. Machine Learning - Stanford
  1. Machine Learning - Caltech
  1. Machine Learning - Carnegie Mellon
  1. Neural Networks for Machine Learning
  1. Neural networks class
  1. Deep Learning Course
  1. A.I - Berkeley
  1. A.I - MIT
  1. Vision and learning - computers and brains
  1. Convolutional Neural Networks for Visual Recognition - Stanford
  1. Convolutional Neural Networks for Visual Recognition - Stanford
  1. Deep Learning for Natural Language Processing - Stanford
  1. Neural Networks - usherbrooke
  1. Machine Learning - Oxford
  1. Deep Learning - Nvidia
  1. Graduate Summer School: Deep Learning, Feature Learning
  1. Deep Learning - Udacity/Google
  1. Deep Learning - UWaterloo
  1. Statistical Machine Learning - CMU
  1. Deep Learning Course
  1. Bay area DL school
  • [http://www.bayareadlschool.org/] by Andrew Ng, Yoshua Bengio, Samy Bengio, Andrej Karpathy, Richard Socher, Hugo Larochelle and many others @ Stanford, CA (2016)
  1. Designing, Visualizing and Understanding Deep Neural Networks-UC Berkeley
  1. UVA Deep Learning Course
  1. MIT 6.S094: Deep Learning for Self-Driving Cars
  1. MIT 6.S191: Introduction to Deep Learning
  1. Berkeley CS 294: Deep Reinforcement Learning
  1. [Keras in Motion video course
  1. Practical Deep Learning For Coders

Videos and Lectures

  1. How To Create A Mind
  1. Deep Learning, Self-Taught Learning and Unsupervised Feature Learning
  1. Recent Developments in Deep Learning
  1. The Unreasonable Effectiveness of Deep Learning
  1. Deep Learning of Representations
  1. Principles of Hierarchical Temporal Memory
  1. Machine Learning Discussion Group - Deep Learning w/ Stanford AI Lab
  1. Making Sense of the World with Deep Learning
  1. Demystifying Unsupervised Feature Learning
  1. Visual Perception with Deep Learning
  1. The Next Generation of Neural Networks
  1. The wonderful and terrifying implications of computers that can learn
  1. Unsupervised Deep Learning - Stanford
  1. Natural Language Processing
  1. A beginners Guide to Deep Neural Networks
  1. Deep Learning: Intelligence from Big Data
  1. Introduction to Artificial Neural Networks and Deep Learning
  1. NIPS 2016 lecture and workshop videos

代码

  1. Caffe
  1. Torch7
  1. Theano
  1. cuda-convnet
  1. convetjs
  1. Ccv
  1. NuPIC -[http://numenta.org/nupic.html]
  2. DeepLearning4J
  1. Brain
  1. DeepLearnToolbox
  1. Deepnet
  1. Deeppy -[https://github.com/andersbll/deeppy]
  2. JavaNN
  1. hebel
  1. Mocha.jl
  1. OpenDL
  1. cuDNN
  1. MGL
  1. Knet.jl
  1. Nvidia DIGITS - a web app based on Caffe
  1. Neon - Python based Deep Learning Framework
  1. Keras - Theano based Deep Learning Library
  1. Chainer - A flexible framework of neural networks for deep learning
  1. RNNLM Toolkit
  1. RNNLIB - A recurrent neural network library
  1. char-rnn
  1. MatConvNet: CNNs for MATLAB
  1. Minerva - a fast and flexible tool for deep learning on multi-GPU
  1. Brainstorm - Fast, flexible and fun neural networks.
  1. Tensorflow - Open source software library for numerical computation using data flow graphs
  1. DMTK - Microsoft Distributed Machine Learning Tookit
  1. Scikit Flow - Simplified interface for TensorFlow [mimicking Scikit Learn]
  1. MXnet - Lightweight, Portable, Flexible Distributed/Mobile Deep Learning framework
  1. Veles - Samsung Distributed machine learning platform
  1. Marvin - A Minimalist GPU-only N-Dimensional ConvNets Framework
  1. Apache SINGA - A General Distributed Deep Learning Platform
  1. DSSTNE - Amazon's library for building Deep Learning models
  1. SyntaxNet - Google's syntactic parser - A TensorFlow dependency library
  1. mlpack - A scalable Machine Learning library
  1. Torchnet - Torch based Deep Learning Library
  1. Paddle - PArallel Distributed Deep LEarning by Baidu
  1. NeuPy - Theano based Python library for ANN and Deep Learning
  1. Lasagne - a lightweight library to build and train neural networks in Theano
  1. nolearn - wrappers and abstractions around existing neural network libraries, most notably Lasagne
  1. Sonnet - a library for constructing neural networks by Google's DeepMind
  1. PyTorch - Tensors and Dynamic neural networks in Python with strong GPU acceleration
  1. CNTK - Microsoft Cognitive Toolkit

领域专家

  1. Aaron Courville
  2. Abdel-rahman Mohamed
  3. Adam Coates
  4. Alex Acero
  5. Alex Krizhevsky
  6. Alexander Ilin
  7. Amos Storkey
  8. Andrej Karpathy
  9. Andrew M. Saxe
  10. Andrew Ng
  1. Andrew W. Senior
  1. Andriy Mnih
  1. Ayse Naz Erkan
  1. Benjamin Schrauwen
  1. Bernardete Ribeiro
  1. Bo David Chen
  1. Boureau Y-Lan
  1. Brian Kingsbury
  1. Christopher Manning
  1. Clement Farabet
  1. Dan Claudiu Cireșan
  1. David Reichert
  1. Derek Rose
  1. Dong Yu
  1. Drausin Wulsin
  1. Erik M. Schmidt
  1. Eugenio Culurciello
  1. Frank Seide
  1. Galen Andrew
  1. Geoffrey Hinton
  1. George Dahl
  1. Graham Taylor
  1. Grégoire Montavon
  1. Guido Francisco Montúfar
  1. Guillaume Desjardins
  1. Hannes Schulz
  1. Hélène Paugam-Moisy
  1. Honglak Lee
  1. Hugo Larochelle
  1. Ilya Sutskever
  1. Itamar Arel
  1. James Martens
  1. Jason Morton
  1. Jason Weston
  1. Jeff Dean
  1. Jiquan Mgiam
  1. Joseph Turian
  1. Joshua Matthew Susskind
  1. Jürgen Schmidhuber
  1. Justin A. Blanco
  1. Koray Kavukcuoglu
  1. KyungHyun Cho
  1. Li Deng
  1. Lucas Theis
  1. Ludovic Arnold
  1. Marc'Aurelio Ranzato
  1. Martin Längkvist
  1. Misha Denil
  1. Mohammad Norouzi
  1. Nando de Freitas
  1. Navdeep Jaitly
  1. Nicolas Le Roux
  1. Nitish Srivastava
  1. Noel Lopes
  1. Oriol Vinyals
  1. Pascal Vincent
  1. Patrick Nguyen
  1. Pedro Domingos
  1. Peggy Series
  1. Pierre Sermanet
  1. Piotr Mirowski
  1. Quoc V. Le
  1. Reinhold Scherer
  1. Richard Socher
  1. Rob Fergus
  1. Robert Coop
  1. Robert Gens
  1. Roger Grosse
  1. Ronan Collobert
  1. Ruslan Salakhutdinov
  1. Sebastian Gerwinn
  1. Stéphane Mallat
  1. Sven Behnke
  1. Tapani Raiko
  1. Tara Sainath
  1. Tijmen Tieleman
  1. Tom Karnowski
  1. Tomáš Mikolov
  1. Ueli Meier
  1. Vincent Vanhoucke
  1. Volodymyr Mnih
  1. Yann LeCun
  1. Yichuan Tang
  1. Yoshua Bengio
  1. Yotaro Kubo
  1. Youzhi [Will] Zou
  1. Fei-Fei Li
  1. Ian Goodfellow
  1. Robert Laganière

重要网站收藏

  1. deeplearning.net
  2. deeplearning.stanford.edu
  3. nlp.stanford.edu
  4. ai-junkie.com
  5. cs.brown.edu/research/ai
  6. eecs.umich.edu/ai
  7. cs.utexas.edu/users/ai-lab
  8. cs.washington.edu/research/ai
  9. aiai.ed.ac.uk
  10. www-aig.jpl.nasa.gov
  1. csail.mit.edu
  1. cgi.cse.unsw.edu.au/~aishare
  1. cs.rochester.edu/research/ai
  1. ai.sri.com
  1. isi.edu/AI/isd.htm
  1. nrl.navy.mil/itd/aic
  1. hips.seas.harvard.edu
  1. AI Weekly
  1. stat.ucla.edu
  1. deeplearning.cs.toronto.edu
  1. jeffdonahue.com/lrcn/
  1. visualqa.org
  1. www.mpi-inf.mpg.de/departments/computer-vision...
  1. Deep Learning News
  1. Machine Learning is Fun! Adam Geitgey's Blog

免费在线图书

  1. Deep Learning
  2. Neural Networks and Deep Learning
  3. Deep Learning
  4. Deep Learning Tutorial
  5. neuraltalk
  6. An introduction to genetic algorithms
  7. Artificial Intelligence: A Modern Approach
  8. Deep Learning in Neural Networks: An Overview
  9. 神经网络与深度学习
  10. 动手深度学习Release 2.0.0-beta0

Datasets

  1. MNIST
  2. Google House Numbers
  3. CIFAR-10 and CIFAR-100
  4. IMAGENET
  5. Tiny Images
  6. Flickr Data
  7. Berkeley Segmentation Dataset 500
  8. UC Irvine Machine Learning Repository
  9. Flickr 8k
  10. Flickr 30k
  11. Microsoft COCO
  12. VQA
  13. Image QA
  14. AT&T Laboratories Cambridge face database
  15. AVHRR Pathfinder
  16. Air Freight
    • [http://www.anc.ed.ac.uk/~amos/afreightdata.html] - The Air Freight data set is a ray-traced image sequence along with ground truth segmentation based on textural characteristics. [455 images + GT, each 160x120 pixels]. [Formats: PNG]
  17. Amsterdam Library of Object Images
    • [http://www.science.uva.nl/~aloi/] - ALOI is a color image collection of one-thousand small objects, recorded for scientific purposes. In order to capture the sensory variation in object recordings, we systematically varied viewing angle, illumination angle, and illumination color for each object, and additionally captured wide-baseline stereo images. We recorded over a hundred images of each object, yielding a total of 110,250 images for the collection. [Formats: png]
  18. Annotated face, hand, cardiac & meat images
    • [http://www.imm.dtu.dk/~aam/] - Most images & annotations are supplemented by various ASM/AAM analyses using the AAM-API. [Formats: bmp,asf]
  19. Image Analysis and Computer Graphics
  20. Brown University Stimuli
  21. CAVIAR video sequences of mall and public space behavior
  22. Machine Vision Unit
  23. CCITT Fax standard images
  24. CMU CIL's Stereo Data with Ground Truth[cil-ster.html] - 3 sets of 11 images, including color tiff images with spectroradiometry [Formats: gif, tiff]
  25. CMU PIE Database
  26. CMU VASC Image Database
  27. Caltech Image Database
  28. Columbia-Utrecht Reflectance and Texture Database
    • [http://www.cs.columbia.edu/CAVE/curet/] - Texture and reflectance measurements for over 60 samples of 3D texture, observed with over 200 different combinations of viewing and illumination directions. [Formats: bmp]
  29. Computational Colour Constancy Data
    • [http://www.cs.sfu.ca/~colour/data/index.html] - A dataset oriented towards computational color constancy, but useful for computer vision in general. It includes synthetic data, camera sensor data, and over 700 images. [Formats: tiff]
  30. Computational Vision Lab
  31. Content-based image retrieval database
  32. Efficient Content-based Retrieval Group
  33. Densely Sampled View Spheres
  34. Computer Science VII [Graphical Systems]
  35. Digital Embryos
  36. Univerity of Minnesota Vision Lab
  37. El Salvador Atlas of Gastrointestinal VideoEndoscopy
  38. FG-NET Facial Aging Database
  39. FVC2000 Fingerprint Databases
    • [http://bias.csr.unibo.it/fvc2000/] - FVC2000 is the First International Competition for Fingerprint Verification Algorithms. Four fingerprint databases constitute the FVC2000 benchmark [3520 fingerprints in all].
  40. Biometric Systems Lab
  41. Face and Gesture images and image sequences
    • [http://www.fg-net.org] - Several image datasets of faces and gestures that are ground truth annotated for benchmarking
  42. German Fingerspelling Database
  43. Language Processing and Pattern Recognition
  44. Groningen Natural Image Database
  45. ICG Testhouse sequence
  46. Institute of Computer Graphics and Vision
  47. IEN Image Library
  48. INRIA's Syntim images database
  49. INRIA
  50. INRIA's Syntim stereo databases
  51. Image Analysis Laboratory
  52. Image Analysis Laboratory
  53. Image Database
  54. JAFFE Facial Expression Image Database
    • [http://www.mis.atr.co.jp/~mlyons/jaffe.html] - The JAFFE database consists of 213 images of Japanese female subjects posing 6 basic facial expressions as well as a neutral pose. Ratings on emotion adjectives are also available, free of charge, for research purposes. [Formats: TIFF Grayscale images.]
  55. ATR Research, Kyoto, Japan
  56. JISCT Stereo Evaluation
    • [ftp://ftp.vislist.com/IMAGERY/JISCT/] - 44 image pairs. These data have been used in an evaluation of stereo analysis, as described in the April 1993 ARPA Image Understanding Workshop paper ``The JISCT Stereo Evaluation'' by R.C.Bolles, H.H.Baker, and M.J.Hannah, 263--274 [Formats: SSI]
  57. MIT Vision Texture
  58. MIT face images and more
  59. Machine Vision
  60. Mammography Image Databases
  61. ftp://ftp.cps.msu.edu/pub/prip
  62. Middlebury Stereo Data Sets with Ground Truth
    • [http://www.middlebury.edu/stereo/data.html] - Six multi-frame stereo data sets of scenes containing planar regions. Each data set contains 9 color images and subpixel-accuracy ground-truth data. [Formats: ppm]
  63. Middlebury Stereo Vision Research Page
  64. Modis Airborne simulator, Gallery and data set
  65. NIST Fingerprint and handwriting
  66. NIST Fingerprint data
  67. NLM HyperDoc Visible Human Project
  68. National Design Repository
    • [http://www.designrepository.org] - Over 55,000 3D CAD and solid models of [mostly] mechanical/machined engineerign designs. [Formats: gif,vrml,wrl,stp,sat]
  69. Geometric & Intelligent Computing Laboratory
  70. OSU [MSU] 3D Object Model Database
  71. OSU [MSU/WSU] Range Image Database
  72. OSU/SAMPL Database: Range Images, 3D Models, Stills, Motion Sequences
  73. Signal Analysis and Machine Perception Laboratory
  74. Otago Optical Flow Evaluation Sequences
  75. Vision Research Group
  76. ftp://ftp.limsi.fr/pub/quenot/opflow/testdata/piv/
    • [ftp://ftp.limsi.fr/pub/quenot/opflow/testdata/piv/] - Real and synthetic image sequences used for testing a Particle Image Velocimetry application. These images may be used for the test of optical flow and image matching algorithms. [Formats: pgm [raw]]
  77. LIMSI-CNRS/CHM/IMM/vision
  78. LIMSI-CNRS
  79. Photometric 3D Surface Texture Database
  80. SEQUENCES FOR OPTICAL FLOW ANALYSIS [SOFA]
    • [http://www.cee.hw.ac.uk/~mtc/sofa] - 9 synthetic sequences designed for testing motion analysis applications, including full ground truth of motion and camera parameters. [Formats: gif]
  81. Computer Vision Group
  82. Sequences for Flow Based Reconstruction
  83. Stereo Images with Ground Truth Disparity and Occlusion
    • [http://www-dbv.cs.uni-bonn.de/stereo_data/] - a small set of synthetic images of a hallway with varying amounts of noise added. Use these images to benchmark your stereo algorithm. [Formats: raw, viff [khoros], or tiff]
  84. Stuttgart Range Image Database
  85. Department Image Understanding
  86. The AR Face Database
  87. Purdue Robot Vision Lab
  1. The MIT-CSAIL Database of Objects and Scenes
  • [http://web.mit.edu/torralba/www/database.html] - Database for testing multiclass object detection and scene recognition algorithms. Over 72,000 images with 2873 annotated frames. More than 50 annotated object classes. [Formats: jpg]
  1. The RVL SPEC-DB [SPECularity DataBase]
  • [http://rvl1.ecn.purdue.edu/RVL/specularity_database/] - A collection of over 300 real images of 100 objects taken under three different illuminaiton conditions [Diffuse/Ambient/Directed]. -- Use these images to test algorithms for detecting and compensating specular highlights in color images. [Formats: TIFF ]
  1. Robot Vision Laboratory
  1. The Xm2vts database
  • [http://xm2vtsdb.ee.surrey.ac.uk] - The XM2VTSDB contains four digital recordings of 295 people taken over a period of four months. This database contains both image and video data of faces.
  1. Centre for Vision, Speech and Signal Processing
  1. Traffic Image Sequences and 'Marbled Block' Sequence
  1. IAKS/KOGS
  1. U Bern Face images
  1. U Michigan textures
  1. U Oulu wood and knots database
  1. UCID - an Uncompressed Colour Image Database
  1. UMass Vision Image Archive
  1. UNC's 3D image database
  1. USF Range Image Data with Segmentation Ground Truth
  1. University of Oulu Physics-based Face Database
  1. Machine Vision and Media Processing Unit
  1. University of Oulu Texture Database
  • [http://www.outex.oulu.fi] - Database of 320 surface textures, each captured under three illuminants, six spatial resolutions and nine rotation angles. A set of test suites is also provided so that texture segmentation, classification, and retrieval algorithms can be tested in a standard manner. [Formats: bmp, ras, xv]
  1. Machine Vision Group
  1. Usenix face database
  1. View Sphere Database
  1. PRIMA, GRAVIR
  1. Vision-list Imagery Archive
  1. Wiry Object Recognition Database
  • [http://www.cs.cmu.edu/~owenc/word.htm] - Thousands of images of a cart, ladder, stool, bicycle, chairs, and cluttered scenes with ground truth labelings of edges and regions. [Formats: jpg]
  1. 3D Vision Group
  1. Yale Face Database
  1. Yale Face Database B
  1. Center for Computational Vision and Control
  2. DeepMind QA Corpus
  3. YouTube-8M Dataset
    • [https://research.google.com/youtube8m/] - YouTube-8M is a large-scale labeled video dataset that consists of 8 million YouTube video IDs and associated labels from a diverse vocabulary of 4800 visual entities.
  4. Open Images dataset

初步版本,水平有限,有错误或者不完善的地方,欢迎大家提建议和补充,会一直保持更新,本文为专知内容组原创内容,未经允许不得转载,如需转载请发送邮件至fangquanyi@gmail.com 或 联系微信专知小助手(Rancho_Fang)

敬请关注http://www.zhuanzhi.ai 和关注专知公众号,获取第一手AI相关知识

最近更新:2022-2-16

成为VIP会员查看完整内容
微信扫码咨询专知VIP会员