摘要: 行人重识别(Person re-identification, Re-ID)旨在跨区域、跨场景的视频中实现行人的检索及跟踪, 其成果在智能监控、刑事侦查、反恐防暴等领域具有广阔的应用前景. 由于真实场景下的行人图像存在光照差异大、拍摄视角不统一、物体遮挡等问题, 导致从图像整体提取的全局特征易受无关因素的干扰, 识别精度不高. 基于局部特征的方法通过挖掘行人姿态、人体部位、视角特征等关键信息, 可加强模型对人体关键区域的学习, 降低无关因素的干扰, 从而克服全局特征的缺陷, 也因此成为近几年的研究热点. 本文对近年基于局部特征的行人重识别文献进行梳理, 简述了行人重识别的发展历程, 将基于局部特征的方法归纳为基于姿势提取、基于特征空间分割、基于视角信息、基于注意力机制四类, 并详细阐述了每一类的原理及优缺点. 然后在三个主流行人数据集上对典型方法的识别性能进行了分析比较, 最后总结了目前基于局部特征算法的难点, 并对未来本领域的研究趋势和发展方向进行展望.

http://www.aas.net.cn/cn/article/doi/10.16383/j.aas.c190821

成为VIP会员查看完整内容
0
14

相关内容

行人重识别(Person re-identification)也称行人再识别,是利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术。广泛被认为是一个图像检索的子问题。给定一个监控行人图像,检索跨设备下的该行人图像。旨在弥补目前固定的摄像头的视觉局限,并可与行人检测/行人跟踪技术相结合,可广泛应用于智能视频监控、智能安保等领域。 由于不同摄像设备之间的差异,同时行人兼具刚性和柔性的特性 ,外观易受穿着、尺

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

基于人工智能技术的人机对话系统在人机交互、智能助手、智能客服、问答咨询等多个领域应用日益广泛,这极大地促进了自然语言理解及生成、对话状态追踪和端到端的深度学习模型构建等相关理论与技术的发展,并成为目前工业界与学术界共同关注的研究热点之一。该文聚焦特定场景下的任务型对话系统,在对其基本概念进行形式化定义的基础上,围绕着以最少的对话轮次来获得最佳用户需求相匹配的对话内容为目标,针对目前存在的复杂业务场景下基于自然语言的用户意图的准确理解和识别、针对训练数据的标注依赖及模型结果的可解释性不足,以及多模态条件下对话内容的个性化生成这三个重大的技术问题和挑战,对当前的技术与研究进展进行系统地对比分析和综述,为进一步的研究工作奠定基础。同时,对新一代的面向任务型的人机对话系统未来的关键研究方向与任务进行总结。

http://jcip.cipsc.org.cn/CN/abstract/abstract3199.shtml

成为VIP会员查看完整内容
0
18

摘要: 随着深度神经网络和智能移动设备的快速发展,网络结构轻量化设计逐渐成为前沿且热门的研究方向,而轻量化的本质是在保持深度神经网络精度的前提下优化存储空间和提升运行速度。阐述深度学习的轻量化网络结构设计方法,对比与分析人工设计的轻量化方法、基于神经网络结构搜索的轻量化方法和基于自动模型压缩的轻量化方法的创新点与优劣势,总结与归纳上述3种主流轻量化方法中性能优异的网络结构并分析各自的优势和局限性。在此基础上,指出轻量化网络结构设计所面临的挑战,同时对其应用方向及未来发展趋势进行展望。

http://www.ecice06.com/CN/10.19678/j.issn.1000-3428.0060931

成为VIP会员查看完整内容
0
19

摘 要:小目标检测长期以来是计算机视觉中的一个难点和研究热点。在深度学习的驱动下,小目标 检测已取得了重大突破,并成功应用于国防安全、智能交通和工业自动化等领域。为了进一步促进小 目标检测的发展,本文对小目标检测算法进行了全面的总结,并对已有算法进行了归类、分析和比较。首先,对小目标进行了定义,并概述小目标检测所面临的挑战。然后,重点阐述从数据增强、多尺度学 习、上下文学习、生成对抗学习以及无锚机制等方面来提升小目标检测性能的方法,并分析了这些方法 的优缺点和关联性。之后,全面介绍小目标数据集,并在一些常用的公共数据集上对已有算法进行了 性能评估。最后本文对小目标检测技术的未来发展方向进行了展望。

成为VIP会员查看完整内容
0
27

随着人脸表情识别任务逐渐从实验室受控环境转移至具有挑战性的真实世界环境,在深度学习技术的迅猛发展下,深度神经网络能够学习出具有判别能力的特征,逐渐应用于自动人脸表情识别任务。目前的深度人脸表情识别系统致力于解决以下两个问题:1)由于缺乏足量训练数据导致的过拟合问题;2)真实世界环境下其他与表情无关因素变量(例如光照、头部姿态和身份特征)带来的干扰问题。本文首先对近十年深度人脸表情识别方法的研究现状以及相关人脸表情数据库的发展进行概括。然后,将目前基于深度学习的人脸表情识别方法分为两类:静态人脸表情识别和动态人脸表情识别,并对这两类方法分别进行介绍和综述。针对目前领域内先进的深度表情识别算法,对其在常见表情数据库上的性能进行了对比并详细分析了各类算法的优缺点。最后本文对该领域的未来研究方向和机遇挑战进行了总结和展望:考虑到表情本质上是面部肌肉运动的动态活动,基于动态序列的深度表情识别网络往往能够取得比静态表情识别网络更好的识别效果。此外,结合其他表情模型如面部动作单元模型以及其他多媒体模态,如音频模态和人体生理信息能够将表情识别拓展到更具有实际应用价值的场景。

成为VIP会员查看完整内容
0
22

显著性检测一直是计算机视觉领域的关键问题,在视觉跟踪、图像压缩和目标识别等方面有着非常重要的应用。基于传统RGB图像和RGB-D (RGB depth)图像的显著性检测易受复杂背景、光照、遮挡等因素影响,在复杂场景的检测精度较低,鲁棒的显著性检测仍存在很大挑战。随着光场成像技术的发展,人们开始从新的途径解决显著性检测问题。光场数据记录着空间光线位置信息和方向信息,隐含场景的几何结构,能为显著性检测提供可靠的背景、深度等先验信息。因此,利用光场数据进行显著性检测得到了广泛关注,成为研究热点。尽管基于光场数据的显著性检测算法陆续出现,但是缺少对该问题的深刻理解以及研究进展的全面综述。本文系统地综述了基于光场数据的显著性检测研究现状,并进行深入探讨和展望。对光场理论以及用于光场显著性检测的公共数据集进行介绍;系统地介绍了光场显著性检测领域的算法模型和最新进展,从人工设计光场特征、稀疏编码特征和深度学习特征等方面进行全面阐述及分析;通过4个公共光场显著性数据集上的实验数据对不同方法的优缺点进行比较和分析,并结合实际应用指出当前研究的局限性与发展趋势。

http://www.cjig.cn/jig/ch/reader/view_abstract.aspx?file_no=20201201&flag=1

在观测图像时,人类的视觉系统能够快速获取图像中感兴趣的区域和目标,这个过程称为视觉注意力机制。显著性检测是通过智能算法模拟人类视觉注意力机制,提取图像中人类感兴趣的区域(Borji等,2015)。显著性检测一直是计算机视觉领域的研究热点。显著性检测首先检测场景中最引人注意的目标,然后将这类目标作为整体划分出来。准确有效的显著性检测可以为视觉跟踪(Mahadevan和Vasconcelos,2012)、目标检测与识别(Han和Vasconcelos,2014)和视频压缩(Itti,2004)等提供可靠的先验信息。

自Itti等人(1998)提出多尺度显著性检测模型以来,出现了大量各式各样的显著性检测模型,显著性检测算法的性能逐步提升,取得了很大进展(Ju等,2014;Ren等,2015)。但是在复杂场景中,鲁棒的显著性检测仍存在很大挑战,主要表现在:1)场景中存在多个显著目标且尺度变化较大;2)显著区域的颜色或纹理与背景相似;3)场景中光源颜色不一致;4)显著目标被部分遮挡;5)难以提取完整目标。

针对这些难点,研究者提出多种显著性检测算法,根据使用数据来源不同,这些显著性检测算法分为3类:基于RGB图像的显著性检测算法、基于RGB-D(RGB depth)图像的显著性检测算法和基于光场数据的显著性检测算法。其中基于RGB图像的显著性检测算法最多,一个原因是RGB图像是人们生活中最广泛使用且最容易获取的图像。这类算法大多通过计算图像的颜色、形状、方向以及纹理等底层图像特征(Xu等,2013;Zhao和Koch,2012)获取显著线索,或利用特征学习技术如卷积神经网络(Li和Yu,2015a)、稀疏编码(Li等,2013b)或者循环神经网络(Tang等,2016)等方式检测显著性目标。虽然这些方法在显著性检测任务上取得了有竞争力的效果,但是对于挑战性场景,仍然可能出现显著目标检测错误。原因有两个:1)基于深度学习的显著性检测算法受限于RGB图像的特征;2)基于RGB图像的传统算法存在许多先验知识,如显著性区域与其周围环境存在高对比度、背景简单、显著性目标无遮挡、场景光源单一等,而实际上许多真实场景与这些先验相悖,导致基于RGB图像的传统算法性能降低,如图 1(Li等,2014)中基于全局对比度(global contrast,GC)的显著性检测算法(Cheng等,2015)和基于差别区域特征融合(discriminative regional feature integration,DRFI)的显著性检测算法(Jiang等,2013)都无法精准地从背景中分离显著目标。

Poggio和Poggio(1984)表明RGB图像不能完全表示人眼对世界的认识,因为RGB图像忽略了人的双目系统对场景深度的感知。深度信息能够区分位于不同深度层的物体,减少背景干扰(Wolfe和Horowitz,2004)。因此,学者们开始利用双目相机,如Kinect(Zhang,2012)获取含有深度信息的RGB-D图像,结合深度特征和RGB图像中的特征来提高显著性检测的鲁棒性(Lang等,2012;Peng等,2014)。然而,这类算法也存在两方面问题:1)基于RGB-D图像的显著性检测算法严重依赖深度图的质量,当深度图质量较差时,则无法为显著性检测提供有效信息;2)基于RGB-D图像的显著性检测算法常常忽略深度和外观之间的关联,当显著目标与背景有着相似的颜色和深度时,如图 2(Piao等,2019a)所示,基于异性中心-周围特征的深度显著性检测算法(anisotropic center-surround difference,ACSD)(Ju等,2014)也无法精准检测显著目标。

光场成像借助新的成像技术,能够同时记录光辐射在空间中的位置和方向信息(Adelson和Wang,1992),与RGB图像和RGB-D图像相比,光场数据包含了光的颜色、强度、位置和方向,更能反映自然场景的几何和反射特性,已成功用于计算机视觉的许多任务,如材料识别(Wang等,2016)、深度估计(Tao等,2017;Williem等,2018;Jeon,2019)和显著性检测(Li等,2014;Zhang等,2015)等。其中,在显著性检测任务中,相比RGB图像和RGB-D图像,利用光场数据进行显著性检测有以下优势:1)光场数据包含位置信息和角度信息,为获得场景深度信息提供了多视角几何信息;2)数字重聚焦技术(Ng等,2005)可以将光场数据合成一系列聚焦在不同深度层的焦点堆栈图像,显著目标个体通常处于同一深度面,利用这些焦点堆栈图像的聚焦区域线索,能够提供背景线索,更完整地检测显著目标;3)光场数据记录不同方向的光线信息,可以从多个角度描述场景,提供了有效的显著目标遮挡信息;4)从光场数据中能生成全聚焦图像,全聚焦图像中的每个像素都是清晰的,有更清楚的颜色、纹理等。从这些方面来看,光场数据可以为显著性检测提供更多信息以及解决检测难题的途径,有利于处理相似的前景和背景、显著目标被部分遮挡、多个显著目标等难点场景,如图 1所示,相比基于RGB图像的算法,光场显著性检测方法(light field saliency,LFS)(Li等,2014)更能应对复杂场景。

自Li等人(2014)利用光场数据进行显著性检测后,基于光场数据的显著性检测迅速发展,出现了很多基于光场数据的显著性检测算法(Zhang等,2015;Li等,2015b;Zhang等,2017;Wang等,2018b;Zhang等,2020),但是一直没有完整的关于光场显著性检测进展的文献综述和详细调查,目前,基于光场数据的显著性检测研究在该领域内仍然存在很大的进步空间,因此有必要进行全面综述和讨论。本文系统描述了基于光场数据的显著性检测研究进展和面临的挑战,希望能为进一步研究显著性检测提供帮助,并期待能启发更多的创新型工作。

成为VIP会员查看完整内容
0
9

摘要:小目标检测是针对图像中像素占比少的目标,借助计算机视觉在图像中找到并判断该目标所属类别的目标检测技术。与目前应用较为成熟的大尺度、中尺度目标检测不同,小目标自身存在着语义信息少、覆盖面积小等先天不足,导致小目标的检测效果并不理想,因此如何提高小目标的检测效果依然是计算机视觉领域的一大难题。对近年来国内外小目标检测领域研究成果进行了梳理,以小目标检测技术为核心,首先对关于小目标的定义、检测难点进行分析;随后将能有效提高小目标检测精度的方法进行分类汇总,并介绍了各种方法的应用与优缺点;最后对未来小目标检测领域发展趋势进行了预测与展望。

成为VIP会员查看完整内容
0
62

摘要: 行人重识别是近年来计算机视觉领域的热点问题, 经过多年的发展, 基于可见光图像的一般行人重识别技术已经趋近成熟. 然而, 目前的研究多基于一个相对理想的假设, 即行人图像都是在光照充足的条件下拍摄的高分辨率图像. 因此虽然大多数的研究都能取得较为满意的效果, 但在实际环境中并不适用. 多源数据行人重识别即利用多种行人信息进行行人匹配的问题. 除了需要解决一般行人重识别所面临的问题外, 多源数据行人重识别技术还需要解决不同类型行人信息与一般行人图片相互匹配时的差异问题, 如低分辨率图像、红外图像、深度图像、文本信息和素描图像等. 因此, 与一般行人重识别方法相比, 多源数据行人重识别研究更具实用性, 同时也更具有挑战性. 本文首先介绍了一般行人重识别的发展现状和所面临的问题, 然后比较了多源数据行人重识别与一般行人重识别的区别, 并根据不同数据类型总结了5 类多源数据行人重识别问题, 分别从方法、数据集两个方面对现有工作做了归纳和分析. 与一般行人重识别技术相比, 多源数据行人重识别的优点是可以充分利用各类数据学习跨模态和类型的特征转换. 最后, 本文讨论了多源数据行人重识别未来的发展.

http://www.aas.net.cn/cn/article/doi/10.16383/j.aas.c190278

成为VIP会员查看完整内容
0
25

行人再识别的主要任务是利用计算机视觉对特定行人进行跨视域匹配和检索。相比于传统算法,由数据驱 动的深度学习方法所提取的特征更能表征行人之间的区分性。对行人再识别的背景及研究历史、主要面临的挑 战、主要方法、数据集及评价指标进行了梳理和总结。主要从特征表达、局部特征、生成对抗网络三个方面对行人 再识别的算法进行分析,列举了行人再识别9个常用数据集、3个评价标准和14种典型方法在 Market1501数据集 上取得的准确率,最后对行人再识别的未来研究方向进行展望。

成为VIP会员查看完整内容
0
27

题目: 基于深度学习的行人重识别研究进展

摘要:

行人重识别是计算机视觉领域近年来非常热的一个研究课题, 可以被视为图像检索的一个子问题, 其目标是给定一个监控行人图像检索跨设备下的该行人图像. 传统的方法依赖手工特征, 不能适应数据量很大的复杂环境。近年来随着深度学习的发展, 大量基于深度学习的行人重识别方法被提出。本文先简单介绍了该问题的定义及传统方法的局限, 并列举了一些适用于深度学习方法的行人重识别数据集。 此外我们详细地总结了一些比较典型的基于深度学习的行人重识别方法, 并比较了部分算法在 Market1501 数据集上的性能表现。最后我们对该问题未来的研究方向做了一个展望。

作者简介:

罗浩,浙江大学控制科学与工程学院智能系统与控制研究所博士研究生。2015年获得浙江大学控制科学与工程学士学位,主要研究方向为行人重识别, 多目标跟踪, 深度学习, 计算机视觉方向。

姜伟,浙江大学控制科学与工程学院智能系统与控制研究所副教授。2005年获得日本东京工业大学博士学位,主要研究方向为机器视觉, 计算机图形学, 机器学习。

范星,浙江大学控制科学与工程学院博士研究生。2015年获得浙江大学控制科学与工程学士学位,主要研究方向为行人重识别。

张思朋,2016年获得浙江大学控制科学与工程硕士学位,主要研究方向为计算机视觉, 行人重识别。

成为VIP会员查看完整内容
0
32
小贴士
相关VIP内容
专知会员服务
18+阅读 · 11月17日
专知会员服务
19+阅读 · 10月4日
专知会员服务
27+阅读 · 7月10日
专知会员服务
22+阅读 · 3月5日
专知会员服务
16+阅读 · 2月17日
专知会员服务
9+阅读 · 2020年12月23日
专知会员服务
62+阅读 · 2020年12月7日
专知会员服务
25+阅读 · 2020年11月2日
专知会员服务
27+阅读 · 2020年8月19日
基于深度学习的行人重识别研究进展,自动化学报
专知会员服务
32+阅读 · 2019年12月5日
相关资讯
图像修复研究进展综述
专知
6+阅读 · 3月9日
深度人脸表情识别研究进展
专知
3+阅读 · 3月5日
深度学习行人重识别ReID最新综述与展望
计算机视觉life
5+阅读 · 2020年2月16日
生成对抗网络的研究进展与趋势
中国计算机学会
23+阅读 · 2018年11月14日
计算机视觉方向简介 | 目标检测最新进展总结与展望
计算机视觉life
6+阅读 · 2018年10月28日
【学科发展报告】多媒体分析
中国自动化学会
4+阅读 · 2018年9月29日
图像检索研究进展:浅层、深层特征及特征融合
中国计算机学会
98+阅读 · 2018年3月26日
【研究分享】基于踪片Tracklet关联的视觉目标跟踪:现状与展望
中国科学院自动化研究所
8+阅读 · 2018年1月16日
独家 | 基于深度学习的行人重识别研究综述
AI科技评论
10+阅读 · 2017年12月20日
相关论文
Cross-Modality Attention with Semantic Graph Embedding for Multi-Label Classification
Renchun You,Zhiyao Guo,Lei Cui,Xiang Long,Yingze Bao,Shilei Wen
3+阅读 · 2019年12月17日
Hang Yan,Xipeng Qiu,Xuanjing Huang
4+阅读 · 2019年4月9日
A Multi-Objective Deep Reinforcement Learning Framework
Thanh Thi Nguyen
9+阅读 · 2018年6月27日
Jing Xu,Rui Zhao,Feng Zhu,Huaming Wang,Wanli Ouyang
8+阅读 · 2018年5月16日
Qin Zhou,Heng Fan,Shibao Zheng,Hang Su,Xinzhe Li,Shuang Wu,Haibin Ling
5+阅读 · 2018年4月1日
Zhanxiang Feng,Jianhuang Lai,Xiaohua Xie
7+阅读 · 2018年3月30日
Albert Gong,Qiang Qiu,Guillermo Sapiro
8+阅读 · 2018年3月15日
Mingyue Yuan,Dong Yin,Jingwen Ding,Yuhao Luo,Zhipeng Zhou,Chengfeng Zhu,Rui Zhang
6+阅读 · 2018年3月8日
Xuelin Qian,Yanwei Fu,Wenxuan Wang,Tao Xiang,Yang Wu,Yu-Gang Jiang,Xiangyang Xue
5+阅读 · 2018年2月13日
Wentong Liao,Michael Ying Yang,Ni Zhan,Bodo Rosenhahn
3+阅读 · 2018年2月9日
Top