Current state-of-the-art methods of image classification using convolutional neural networks are often constrained by both latency and power consumption. This places a limit on the devices, particularly low-power edge devices, that can employ these methods. Spiking neural networks (SNNs) are considered to be the third generation of artificial neural networks which aim to address these latency and power constraints by taking inspiration from biological neuronal communication processes. Before data such as images can be input into an SNN, however, they must be first encoded into spike trains. Herein, we propose a method for encoding static images into temporal spike trains using edge detection and an adaptive signal sampling method for use in SNNs. The edge detection process consists of first performing Canny edge detection on the 2D static images and then converting the edge detected images into two X and Y signals using an image-to-signal conversion method. The adaptive signaling approach consists of sampling the signals such that the signals maintain enough detail and are sensitive to abrupt changes in the signal. Temporal encoding mechanisms such as threshold-based representation (TBR) and step-forward (SF) are then able to be used to convert the sampled signals into spike trains. We use various error and indicator metrics to optimize and evaluate the efficiency and precision of the proposed image encoding approach. Comparison results between the original and reconstructed signals from spike trains generated using edge-detection and adaptive temporal encoding mechanism exhibit 18x and 7x reduction in average root mean square error (RMSE) compared to the conventional SF and TBR encoding, respectively, while used for encoding MNIST dataset.


翻译:使用神经神经网络进行图像分类的当前最新先进方法往往受到静态和动力消耗的制约。 这会限制能够使用这些方法的设备, 特别是低功边缘设备。 Spiking神经网络( SNN)被认为是第三代人工神经网络, 目的是从生物神经通信过程中获得灵感, 解决这些静态和能量限制。 然而, 在将图像等数据输入 SNN 之前, 必须先将其编码为钉钉列列。 在此, 我们提出一种将静态图像编码到短尖列列列上的方法, 使用边缘探测和适应性信号取样方法, 在2D静态图像上首先进行Canny边缘探测, 然后将检测到的图像转换成两个 X和Y信号, 从生物神经通信转换到生物神经通信。 适应信号的信号包括信号保持足够详细, 并且对信号的突然变化十分敏感。 以临界值为基础的图像编码机制, 如基于临界值的显示( TRBR), 和 向前向前的图像采集信号取样, 然后用我们提出的递定值 的精确度 和向前置的精确度指标 。 然后使用我们使用 的 的 的 的 和向前置 的 的 的 的 的 的 和 的 的 的 的 的 的 的 和 的 和向前置变校正压压压 的 的 的 和 的 的 的 的 的 的 的 的 的 的 的 的 和 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 和 和 的 的 的 和 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 级的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 和 和 的 的 的 的 的 的 的 的 的

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
一份简单《图神经网络》教程,28页ppt
专知会员服务
120+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
75+阅读 · 2020年7月26日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
152+阅读 · 2020年5月26日
和积网络综述论文,Sum-product networks: A survey,24页pdf
专知会员服务
23+阅读 · 2020年4月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
10+阅读 · 2017年12月5日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年12月17日
Arxiv
6+阅读 · 2021年4月13日
Few-shot Scene-adaptive Anomaly Detection
Arxiv
8+阅读 · 2020年7月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
10+阅读 · 2017年12月5日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员