Microbiome data analyses require statistical models that can simultaneously decode microbes' reactions to the environment and interactions among microbes. While a multiresponse linear regression model seems like a straightforward solution, we argue that treating it as a graphical model is flawed given that the regression coefficient matrix does not encode the conditional dependence structure between response and predictor nodes because it does not represent the adjacency matrix. This observation is especially important in biological settings when we have prior knowledge on the edges from specific experimental interventions that can only be properly encoded under a conditional dependence model. Here, we propose a chain graph model with two sets of nodes (predictors and responses) whose solution yields a graph with edges that indeed represent conditional dependence and thus, agrees with the experimenter's intuition on the average behavior of nodes under treatment. The solution to our model is sparse via Bayesian LASSO and is also guaranteed to be the sparse solution to a Conditional Auto-Regressive (CAR) model. In addition, we propose an adaptive extension so that different shrinkage can be applied to different edges to incorporate edge-specific prior knowledge. Our model is computationally inexpensive through an efficient Gibbs sampling algorithm and can account for binary, counting, and compositional responses via appropriate hierarchical structure. We apply our model to a human gut and a soil microbial compositional datasets and we highlight that CAR-LASSO can estimate biologically meaningful network structures in the data. The CAR-LASSO software is available as an R package at https://github.com/YunyiShen/CAR-LASSO.


翻译:微生物数据分析需要能够同时解码微生物对环境的反应和微生物之间相互作用的统计模型。 虽然多反应线性回归模型似乎是一个简单的解决方案, 我们争辩说, 将它作为图形模型处理是有缺陷的, 因为回归系数矩阵没有将响应和预测节点之间的有条件依赖结构编码, 因为它不代表相邻矩阵。 当我们事先了解特定实验干预的边缘, 而这些实验干预只能在有条件依赖模式下正确编码。 在此, 我们提议一个具有两套节点( 预测和回应) 的链式图表模型, 其解决方案产生一张带有确实代表有条件依赖性的边缘的图表, 因此, 我们提出, 实验者对正在处理的节点的平均行为直观。 我们的模型的解决方案通过巴耶西亚LASO, 并且还被保证成为解析自动递增模式( CAR) 模型的解决方案。 此外, 我们提议了一个适应性扩展的扩展, 不同的缩略图可以应用到不同边缘的边端( 预测和回应) 将精细的 RASL 和直径系统结构应用到我们的生物级结构中。 我们的模型和 将一个廉价的土壤序列结构进行计算, 我们的模型可以适当地计算, 通过一个小路路运数据分析, 数据可以用来用来进行 。

0
下载
关闭预览

相关内容

迁移学习简明教程,11页ppt
专知会员服务
105+阅读 · 2020年8月4日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
一份简单《图神经网络》教程,28页ppt
专知会员服务
120+阅读 · 2020年8月2日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Random Forests for dependent data
Arxiv
0+阅读 · 2021年6月28日
Arxiv
0+阅读 · 2021年6月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员