Artificial neural networks have successfully tackled a large variety of problems by training extremely deep networks via back-propagation. A direct application of back-propagation to spiking neural networks contains biologically implausible components, like the weight transport problem or separate inference and learning phases. Various methods address different components individually, but a complete solution remains intangible. Here, we take an alternate approach that avoids back-propagation and its associated issues entirely. Recent work in deep learning proposed independently training each layer of a network via the information bottleneck (IB). Subsequent studies noted that this layer-wise approach circumvents error propagation across layers, leading to a biologically plausible paradigm. Unfortunately, the IB is computed using a batch of samples. The prior work addresses this with a weight update that only uses two samples (the current and previous sample). Our work takes a different approach by decomposing the weight update into a local and global component. The local component is Hebbian and only depends on the current sample. The global component computes a layer-wise modulatory signal that depends on a batch of samples. We show that this modulatory signal can be learned by an auxiliary circuit with working memory (WM) like a reservoir. Thus, we can use batch sizes greater than two, and the batch size determines the required capacity of the WM. To the best of our knowledge, our rule is the first biologically plausible mechanism to directly couple synaptic updates with a WM of the task. We evaluate our rule on synthetic datasets and image classification datasets like MNIST, and we explore the effect of the WM capacity on learning performance. We hope our work is a first-step towards understanding the mechanistic role of memory in learning.


翻译:人工神经网络通过反向剖析来训练极深的网络,成功地解决了各种各样的问题。 直接应用反向分析方法来弹射神经网络, 含有生物上难以置信的部件, 如重力传输问题或不同的推论和学习阶段。 各种方法单独处理不同的部件, 但完整的解决方案仍然是无形的。 这里, 我们采取替代方法, 避免反向分析及其相关问题。 最近通过信息瓶颈( IB) 来进行深度培训, 并独立培训网络的每个层次。 随后的研究指出, 层间分析方法可以绕过层间传播错误, 导致生物上可信的模式。 不幸的是, IB是用一组样本来计算。 之前的工作用重量更新来解决这个问题, 只使用两个样本( 目前和以前的样本) 。 我们的工作采取不同的方法, 将重量更新到本地和全球部分。 本地部分是 Hebbbibian, 仅取决于当前的样本。 全球部分对分层的分类评估信号, 取决于样本的分层间传播, 从而形成一种生物上可信的模式模式。 我们通过智能的顺序学习了我们最高级的路径, 。 我们的模型学习了我们最高级的路径, 学习了我们最高级的路径 。

0
下载
关闭预览

相关内容

【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
75+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
7+阅读 · 2021年10月19日
Arxiv
63+阅读 · 2021年6月18日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Learning to Importance Sample in Primary Sample Space
Arxiv
5+阅读 · 2018年4月30日
VIP会员
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Top
微信扫码咨询专知VIP会员