Simulations of coronary hemodynamics have improved non-invasive clinical risk stratification and treatment outcomes for coronary artery disease, compared to relying on anatomical imaging alone. However, simulations typically use empirical approaches to distribute total coronary flow amongst the arteries in the coronary tree. This ignores patient variability, the presence of disease, and other clinical factors. Further, uncertainty in the clinical data often remains unaccounted for in the modeling pipeline. We present an end-to-end uncertainty-aware pipeline to (1) personalize coronary flow simulations by incorporating branch-specific coronary flows as well as cardiac function; and (2) predict clinical and biomechanical quantities of interest with improved precision, while accounting for uncertainty in the clinical data. We assimilate patient-specific measurements of myocardial blood flow from CT myocardial perfusion imaging to estimate branch-specific coronary flows. We use adaptive Markov Chain Monte Carlo sampling to estimate the joint posterior distributions of model parameters with simulated noise in the clinical data. Additionally, we determine the posterior predictive distribution for relevant quantities of interest using a new approach combining multi-fidelity Monte Carlo estimation with non-linear, data-driven dimensionality reduction. Our framework recapitulates clinically measured cardiac function as well as branch-specific coronary flows under measurement uncertainty. We substantially shrink the confidence intervals for estimated quantities of interest compared to single-fidelity and state-of-the-art multi-fidelity Monte Carlo methods. This is especially true for quantities that showed limited correlation between the low- and high-fidelity model predictions. Moreover, the proposed estimators are significantly cheaper to compute for a specified confidence level or variance.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
Top
微信扫码咨询专知VIP会员