Few-shot classification aims at classifying categories of a novel task by learning from just a few (typically, 1 to 5) labelled examples. An effective approach to few-shot classification involves a prior model trained on a large-sample base domain, which is then finetuned over the novel few-shot task to yield generalizable representations. However, task-specific finetuning is prone to overfitting due to the lack of enough training examples. To alleviate this issue, we propose a new finetuning approach based on contrastive learning that reuses unlabelled examples from the base domain in the form of distractors. Unlike the nature of unlabelled data used in prior works, distractors belong to classes that do not overlap with the novel categories. We demonstrate for the first time that inclusion of such distractors can significantly boost few-shot generalization. Our technical novelty includes a stochastic pairing of examples sharing the same category in the few-shot task and a weighting term that controls the relative influence of task-specific negatives and distractors. An important aspect of our finetuning objective is that it is agnostic to distractor labels and hence applicable to various base domain settings. Compared to state-of-the-art approaches, our method shows accuracy gains of up to $12\%$ in cross-domain and up to $5\%$ in unsupervised prior-learning settings.


翻译:少见的分类旨在从几个(通常为1至5个)贴上标签的例子中学习新任务类别,从而对新任务进行分类。对少见的分类,有效的方法涉及在大样谱基域上培训的先前模型,然后对小样小样任务进行微调,以产生可概括化的表述。然而,由于缺乏足够的培训实例,具体任务的微调容易被过度适应。为缓解这一问题,我们提议了一种新的微调方法,其依据是对比性学习,以分散器的形式重新利用基础域中未贴标签的例子。与以往工作中使用的未贴标签数据的性质不同,分散器属于与新样类不重叠的类别。我们第一次证明,纳入这种分散器可以大大促进几张一般化。我们的技术新颖之处包括一个在少样图任务中共享同一类别的例子的随机配对,以及一个控制特定任务负和分散器相对影响术语的加权。我们微调目标的一个重要方面是,它对于转移值标签和标签的无标签性质,因此适用于不同基础域的精确度设置。

0
下载
关闭预览

相关内容

小样本学习(Few-Shot Learning,以下简称 FSL )用于解决当可用的数据量比较少时,如何提升神经网络的性能。在 FSL 中,经常用到的一类方法被称为 Meta-learning。和普通的神经网络的训练方法一样,Meta-learning 也包含训练过程和测试过程,但是它的训练过程被称作 Meta-training 和 Meta-testing。
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月12日
Arxiv
0+阅读 · 2021年11月10日
Arxiv
7+阅读 · 2020年10月9日
Arxiv
7+阅读 · 2020年3月1日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
7+阅读 · 2018年12月6日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年11月12日
Arxiv
0+阅读 · 2021年11月10日
Arxiv
7+阅读 · 2020年10月9日
Arxiv
7+阅读 · 2020年3月1日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
7+阅读 · 2018年12月6日
Top
微信扫码咨询专知VIP会员