We propose to add independent pseudo quantization noise to model parameters during training to approximate the effect of a quantization operator. This method, DiffQ, is differentiable both with respect to the unquantized parameters, and the number of bits used. Given a single hyper-parameter expressing the desired balance between the quantized model size and accuracy, DiffQ can optimize the number of bits used per individual weight or groups of weights, in a single training. We experimentally verify that our method outperforms state-of-the-art quantization techniques on several benchmarks and architectures for image classification, language modeling, and audio source separation. For instance, on the Wikitext-103 language modeling benchmark, DiffQ compresses a 16 layers transformer model by a factor of 8, equivalent to 4 bits precision, with a loss of 0.3$\%$ in model accuracy. Code is available at: https://github.com/facebookresearch/diffq


翻译:我们提议在培训期间在模型参数中增加独立的伪量化噪声,以近似量化操作员的效果。这个方法DiffQ(DiffQ)在未量化参数和使用比特数的数量上都是不同的。如果用一个超参数来表示量化模型大小和精确度之间的预期平衡,DiffQ(DiffQ)可以在一次培训中优化每个重量或数组重量使用的比特数。我们实验性地核查我们的方法在图像分类、语言建模和音频源分离的若干基准和结构方面优于最先进的量化技术。例如,在Wikiptext-103语言建模基准上,DiffQ(DiffQ)将16层变压器模型压缩为8倍,相当于4位精确度,在模型精确度上损失0.3美元。代码见:https://github.com/facereearchear/diffq(https://githuub.com/faceresearch/diffq)。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
51+阅读 · 2021年6月17日
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
【Google】梯度下降,48页ppt
专知会员服务
79+阅读 · 2020年12月5日
专知会员服务
44+阅读 · 2020年10月31日
少标签数据学习,54页ppt
专知会员服务
194+阅读 · 2020年5月22日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
专知会员服务
59+阅读 · 2020年3月19日
Yann Lecun 纽约大学《深度学习(PyTorch)》课程(2020)PPT
专知会员服务
178+阅读 · 2020年3月16日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
已删除
将门创投
4+阅读 · 2017年12月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Network Compression via Central Filter
Arxiv
0+阅读 · 2021年12月13日
Arxiv
5+阅读 · 2021年9月30日
Arxiv
6+阅读 · 2021年3月30日
Viewpoint Estimation-Insights & Model
Arxiv
3+阅读 · 2018年7月3日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2021年6月17日
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
【Google】梯度下降,48页ppt
专知会员服务
79+阅读 · 2020年12月5日
专知会员服务
44+阅读 · 2020年10月31日
少标签数据学习,54页ppt
专知会员服务
194+阅读 · 2020年5月22日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
专知会员服务
59+阅读 · 2020年3月19日
Yann Lecun 纽约大学《深度学习(PyTorch)》课程(2020)PPT
专知会员服务
178+阅读 · 2020年3月16日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
相关资讯
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
已删除
将门创投
4+阅读 · 2017年12月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员