Machine Learning (ML) is becoming increasingly important in daily life. In this context, Artificial Neural Networks (ANNs) are a popular approach within ML methods to realize an artificial intelligence. Usually, the topology of ANNs is predetermined. However, there are problems where it is difficult to find a suitable topology. Therefore, Topology and Weight Evolving Artificial Neural Network (TWEANN) algorithms have been developed that can find ANN topologies and weights using genetic algorithms. A well-known downside for large-scale problems is that TWEANN algorithms often evolve inefficient ANNs and require long runtimes. To address this issue, we propose a new TWEANN algorithm called Artificial Life Form (ALF) with the following technical advancements: (1) speciation via structural and semantic similarity to form better candidate solutions, (2) dynamic adaptation of the observed candidate solutions for better convergence properties, and (3) integration of solution quality into genetic reproduction to increase the probability of optimization success. Experiments on large-scale ML problems confirm that these approaches allow the fast solving of these problems and lead to efficient evolved ANNs.


翻译:机械学习(ML)在日常生活中正变得越来越重要。在这方面,人工神经网络(ANNS)是ML方法中实现人工智能的一种流行方法。通常,人为神经网络的地形学是先入为主的。然而,有些问题难以找到合适的地形学。因此,已经开发出地形学和微量演化的人工神经网络(TWEANN)算法,这些算法能够利用基因算法找到非非物质表层学和重量。大规模问题的一个众所周知的缺点是,TWEANN算法往往发展效率低下的非物质,需要长期时间。为了解决这个问题,我们建议采用称为人工生命表(ALF)的新的TWEANN算法,其技术进展如下:(1) 通过结构和语义相似性相似的外观来形成更好的候选解决办法,(2) 动态地调整观察到的候选解决办法,以增进趋同性,(3) 将解决办法质量纳入基因复制,以增加优化成功的可能性。在大规模ML问题上进行的实验证实,这些方法可以迅速解决这些问题,并导致高效率地演变。

0
下载
关闭预览

相关内容

人工生命(Artificial Life)于1993年秋已成为统一的研究人工系统的科学信息交流论坛,具有自然生命系统的行为特征,通过合成或模拟使用计算机(软件),机器人(硬件)和物理化学(人脑)的意义。每一期都有关于人工生命的前沿研究,这些研究将提高我们对生命系统各个方面的认识,如:人工化学和生命的起源、系统与合成生物学、感知,认知和行为、群体的集体行为、进化与生态动力学、开放性和创造性、社会组织与文化演变、对社会及科技的影响、应用于生物学、医学、商业、教育或娱乐。 官网地址:http://dblp.uni-trier.de/db/journals/alife/
专知会员服务
59+阅读 · 2020年3月19日
专知会员服务
112+阅读 · 2019年12月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
计算机类 | 低难度国际会议信息6条
Call4Papers
6+阅读 · 2019年4月28日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Techniques for Automated Machine Learning
Arxiv
4+阅读 · 2019年7月21日
Arxiv
7+阅读 · 2019年6月20日
VIP会员
相关资讯
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
计算机类 | 低难度国际会议信息6条
Call4Papers
6+阅读 · 2019年4月28日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员