When imaging through a semi-reflective medium such as glass, the reflection of another scene can often be found in the captured images. It degrades the quality of the images and affects their subsequent analyses. In this paper, a novel deep neural network approach for solving the reflection problem in imaging is presented. Traditional reflection removal methods not only require long computation time for solving different optimization functions, their performance is also not guaranteed. As array cameras are readily available in nowadays imaging devices, we first suggest in this paper a multiple-image based depth estimation method using a convolutional neural network (CNN). The proposed network avoids the depth ambiguity problem due to the reflection in the image, and directly estimates the depths along the image edges. They are then used to classify the edges as belonging to the background or reflection. Since edges having similar depth values are error prone in the classification, they are removed from the reflection removal process. We suggest a generative adversarial network (GAN) to regenerate the removed background edges. Finally, the estimated background edge map is fed to another auto-encoder network to assist the extraction of the background from the original image. Experimental results show that the proposed reflection removal algorithm achieves superior performance both quantitatively and qualitatively as compared to the state-of-the-art methods. The proposed algorithm also shows much faster speed compared to the existing approaches using the traditional optimization methods.


翻译:当通过玻璃等半反射介质进行成像时,通常可以在所捕捉到的图像中找到另一个场景的反射。 它会降低图像质量, 影响随后的分析。 在本文中, 展示了解决成像反射问题的新型深神经网络方法。 传统的反射去除方法不仅需要较长的计算时间来解决不同的优化功能, 其性能也得不到保障。 由于现在的成像设备中很容易获得阵列照相机, 我们首先在本文中建议使用一个动态神经网络( CNN) 进行基于多重图像的深度估计方法。 拟议的网络避免图像反射产生的深度模糊问题, 直接估计图像边缘的深度。 然后, 它们被用来将边缘归类为属于背景或反射的反射问题。 由于具有相似深度值的边缘容易在分类中出现误差, 它们的性能也得不到保障。 我们建议使用一个基因化的对抗网( GAN) 来重新生成被移除的背景边缘。 最后, 估计的背景边缘映射图被反馈到另一个自动分解网络, 来帮助从原始图像中提取背景的更高级的图像分析方法,, 也显示比质量分析结果, 。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
114+阅读 · 2022年4月21日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
76+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
Arxiv
0+阅读 · 2022年10月2日
Arxiv
0+阅读 · 2022年9月30日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
Top
微信扫码咨询专知VIP会员