This study is concerned with few-shot segmentation, i.e., segmenting the region of an unseen object class in a query image, given support image(s) of its instances. The current methods rely on the pretrained CNN features of the support and query images. The key to good performance depends on the proper fusion of their mid-level and high-level features; the former contains shape-oriented information, while the latter has class-oriented information. Current state-of-the-art methods follow the approach of Tian et al., which gives the mid-level features the primary role and the high-level features the secondary role. In this paper, we reinterpret this widely employed approach by redifining the roles of the multi-level features; we swap the primary and secondary roles. Specifically, we regard that the current methods improve the initial estimate generated from the high-level features using the mid-level features. This reinterpretation suggests a new application of the current methods: to apply the same network multiple times to iteratively update the estimate of the object's region, starting from its initial estimate. Our experiments show that this method is effective and has updated the previous state-of-the-art on COCO-20$^i$ in the 1-shot and 5-shot settings and on PASCAL-5$^i$ in the 1-shot setting.


翻译:本研究涉及几个片段,即将一个不可见的物体类别区域分割成一个查询图像区域,以其实例的辅助图像为背景。目前的方法依靠经过预先训练的CNN支持和查询图像的CNN功能。良好表现的关键取决于其中高层次特征的适当融合;前者包含面向形状的信息,而后者则有面向阶级的信息。目前最先进的方法采用天等(Tian et al.)的方法,使中层特征的主要作用和高层次特征成为次要特征。在本文件中,我们重新解释这一广泛采用的方法,对多层次特征的作用进行重新配置;我们交换主要和次要作用。具体地说,我们认为,目前的方法改进了利用中层特征从高层特征得出的初步估计数得出的初步估计数。重新解释表明,从最初估计开始,采用同样的网络多次更新对目标区域的估计。我们的实验显示,这一方法是有效的,并且更新了前一阶段的PA-25美元和前一阶段的PA-SA-SA-SA-25美元。

0
下载
关闭预览

相关内容

小样本学习(Few-Shot Learning,以下简称 FSL )用于解决当可用的数据量比较少时,如何提升神经网络的性能。在 FSL 中,经常用到的一类方法被称为 Meta-learning。和普通的神经网络的训练方法一样,Meta-learning 也包含训练过程和测试过程,但是它的训练过程被称作 Meta-training 和 Meta-testing。
Stabilizing Transformers for Reinforcement Learning
专知会员服务
56+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
一文读懂Faster RCNN
极市平台
5+阅读 · 2020年1月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月5日
Arxiv
0+阅读 · 2021年11月5日
Arxiv
0+阅读 · 2021年11月4日
Arxiv
10+阅读 · 2018年4月19日
Arxiv
3+阅读 · 2018年2月12日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
56+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
一文读懂Faster RCNN
极市平台
5+阅读 · 2020年1月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员