Notwithstanding the promise of Lipschitz-based approaches to \emph{deterministically} train and certify robust deep networks, the state-of-the-art results only make successful use of feed-forward Convolutional Networks (ConvNets) on low-dimensional data, e.g. CIFAR-10. Because ConvNets often suffer from vanishing gradients when going deep, large-scale datasets with many classes, e.g., ImageNet, have remained out of practical reach. This paper investigates ways to scale up certifiably robust training to Residual Networks (ResNets). First, we introduce the \emph{Linear ResNet} (LiResNet) architecture, which utilizes a new residual block designed to facilitate \emph{tighter} Lipschitz bounds compared to a conventional residual block. Second, we introduce Efficient Margin MAximization (EMMA), a loss function that stabilizes robust training by simultaneously penalizing worst-case adversarial examples from \emph{all} classes. Combining LiResNet and EMMA, we achieve new \emph{state-of-the-art} robust accuracy on CIFAR-10/100 and Tiny-ImageNet under $\ell_2$-norm-bounded perturbations. Moreover, for the first time, we are able to scale up deterministic robustness guarantees to ImageNet, bringing hope to the possibility of applying deterministic certification to real-world applications.


翻译:尽管基于Lipschitz(Lipschitz)的培训和认证强大深度网络(ResNets)的做法很有希望,但最新的结果只是成功地利用低维数据(如CIFAR-10)的Feed-forward Convolutional Nets(ConventalNets) (CondNets) (Conf-forward Convolutional Nets) (Convilal Nets) (Convilal Nets) (Convilal Nets) (Convilational Nets) (Convilational Nets) (Convild) (Convild-form) (Confreat-Conformation) (Confront-Creative) (Conflation) (Conferrence) (Conferrlation) (Lipschitzs) ) (因为Confload the losemental-late, maciscial Maxm) (ement) (e,我们引入了高效的IM2-I.I-I) (eal-I-I.I.I.I.I) (I) (I) (I.) (I.I) (i) (I) (I) (I)) (I.)) (I-I-I-I-I-I) int-I.) (I.) 和Emtalviolfirm) (I.) (I) (I.) (I.) (I) (I.) (I-I-I.) (I-I-I-I-I-I-I-I-I-I-I-I-) ) ) (在)) (I-I) (I) (在) ) (I) (I) vicild) vicl) (I-I-I-I) vicl) (I-I-I-I-I-I-I-I-I-I) vi) vi) vi) vicl) (I) vicl) vi

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
274+阅读 · 2020年11月26日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月20日
Arxiv
0+阅读 · 2023年3月19日
Arxiv
19+阅读 · 2022年7月29日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员