Recent counter-adversarial system design problems have motivated the development of inverse Bayesian filters. For example, inverse Kalman filter (I-KF) has been recently formulated to estimate the adversary's Kalman filter tracked estimates and hence, predict the adversary's future steps. The purpose of this paper and the companion paper (Part I) is to address the inverse filtering problem in non-linear systems by proposing an inverse extended Kalman filter (I-EKF). In a companion paper (Part I), we developed the theory of I-EKF (with and without unknown inputs) and I-KF (with unknown inputs). In this paper, we develop this theory for highly non-linear models, which employ second-order, Gaussian sum, and dithered forward EKFs. In particular, we derive theoretical stability guarantees for the inverse second-order EKF using the bounded non-linearity approach. To address the limitation of the standard I-EKFs that the system model and forward filter are perfectly known to the defender, we propose reproducing kernel Hilbert space-based EKF to learn the unknown system dynamics based on its observations, which can be employed as an inverse filter to infer the adversary's estimate. Numerical experiments demonstrate the state estimation performance of the proposed filters using recursive Cram\'{e}r-Rao lower bound as a benchmark.


翻译:最近的反对抗系统设计问题促使了反巴伊西亚过滤器的发展,例如,最近设计了反Kalman过滤器(I-KF)来估计对手的Kalman过滤器跟踪估计结果,从而预测对手的未来步骤。本文和配套文件(Part I)的目的是通过提议一个反向的Kalman过滤器(I-EKF)来解决非线性系统中的反过滤问题。在一份配套文件(第一部分)中,我们开发了I-EKF(有和没有未知的投入)和I-KF(有未知的投入)的理论。在本文件中,我们为高度非线性模型开发了这一理论,这些模型采用二级、高斯和前向式EKFs。特别是,我们利用封闭的非线性Kalman过滤器(I-EKF)来为反线系统提供理论稳定性保障。为了解决标准的I-EKFs(系统模型和前方过滤器为维护者所熟知)的局限性,我们提议用较低的基内尔·希尔伯特空间过滤器空间观察模型,作为在不断测试的周期中学习不为核心的状态的系统。

0
下载
关闭预览

相关内容

卡尔曼滤波是一种高效率的递归滤波器(自回归滤波器),它能够从一系列的不完全及包含噪声的测量中,估计动态系统的状态。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
67+阅读 · 2022年6月28日
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
专知会员服务
50+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
96+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
24+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月5日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
67+阅读 · 2022年6月28日
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
专知会员服务
50+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
96+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
24+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员