The use of gait for person identification has important advantages such as being non-invasive, unobtrusive, not requiring cooperation and being less likely to be obscured compared to other biometrics. Existing methods for gait recognition require cooperative gait scenarios, in which a single person is walking multiple times in a straight line in front of a camera. We aim to address the hard challenges of real-world scenarios in which camera feeds capture multiple people, who in most cases pass in front of the camera only once. We address privacy concerns by using only motion information of walking individuals, with no identifiable appearance-based information. As such, we propose a novel weakly supervised learning framework, WildGait, which consists of training a Spatio-Temporal Graph Convolutional Network on a large number of automatically annotated skeleton sequences obtained from raw, real-world, surveillance streams to learn useful gait signatures. Our results show that, with fine-tuning, we surpass in terms of recognition accuracy the current state-of-the-art pose-based gait recognition solutions. Our proposed method is reliable in training gait recognition methods in unconstrained environments, especially in settings with scarce amounts of annotated data. We obtain an accuracy of 84.43% on CASIA-B and 71.3% on FVG, while using only 10% of the available training data. This consists of 29% and 38% accuracy improvement on the respective datasets when using the same network without pretraining.


翻译:人的身份识别使用“步态”具有重要优势,如非侵入性、不侵扰性,不需要合作,也不太可能与其他生物鉴别技术相比被模糊。现有的行动识别方法需要合作的步态情景假设,其中一个人在镜头前直直行行走多次。我们的目标是应对现实世界情景的严峻挑战,在现实情景中,相机捕捉多人,在大多数情况下,他们只通过一次照相机。我们只使用行走者的运动信息,而没有明显的外观信息,以解决隐私问题。因此,我们提议了一个新颖的、监管不力的学习框架,即野地加伊特,它包括培训一个Spatio-Temologal Convolution 网络,在大量从原始的、真实的、真实的、监视流中自动获得附加说明的骨架序列,以学习有用的手势签名。我们的结果显示,经过微调,我们在认识准确度上超越了目前以艺术为主的组合版版版版的“歌”识别解决方案。我们提议的方法是可靠的,在不受限制的环境下进行识别识别方法,在不严谨的环境下进行这种识别方法,尤其是在有精确度环境中进行这种精确性环境中,特别是在有10 %数据的情况下,我们使用有10 %的系统化的系统化数据结构上,只有10个数据级的精确度使用。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
【图与几何深度学习】Graph and geometric deep learning,49页ppt
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
94+阅读 · 2020年5月31日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
126+阅读 · 2020年5月14日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
24+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Arxiv
5+阅读 · 2020年3月17日
Arxiv
5+阅读 · 2018年12月18日
VIP会员
相关VIP内容
【图与几何深度学习】Graph and geometric deep learning,49页ppt
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
94+阅读 · 2020年5月31日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
126+阅读 · 2020年5月14日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
24+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Top
微信扫码咨询专知VIP会员