In past years model-agnostic meta-learning (MAML) has been one of the most promising approaches in meta-learning. It can be applied to different kinds of problems, e.g., reinforcement learning, but also shows good results on few-shot learning tasks. Besides their tremendous success in these tasks, it has still not been fully revealed yet, why it works so well. Recent work proposes that MAML rather reuses features than rapidly learns. In this paper, we want to inspire a deeper understanding of this question by analyzing MAML's representation. We apply representation similarity analysis (RSA), a well-established method in neuroscience, to the few-shot learning instantiation of MAML. Although some part of our analysis supports their general results that feature reuse is predominant, we also reveal arguments against their conclusion. The similarity-increase of layers closer to the input layers arises from the learning task itself and not from the model. In addition, the representations after inner gradient steps make a broader change to the representation than the changes during meta-training.


翻译:在过去几年中,模型-不可知元学习(MAML)是元学习中最有希望的方法之一,可以应用于不同种类的问题,例如强化学习,但也可以在微小的学习任务上取得良好结果。除了这些任务的巨大成功之外,它仍未完全被揭示出来,为什么它如此成功。最近的工作建议MAML比再利用的特性要好,而不是迅速学习。在本文件中,我们希望通过分析MAML的代表性来激发对这一问题的更深刻的理解。我们采用代表性分析(RSA),这是神经科学中一种成熟的方法,也是对MAML的微小的即时学习。虽然我们的分析中的一部分支持其一般性结果,以再利用为主,但我们也提出了反对其结论的论点。与投入层相近的层次的类似性增加产生于学习任务本身而不是模型。此外,在内梯级步骤之后的表述对代表性的变化比元培训期间的变化要大得多。

0
下载
关闭预览

相关内容

MAML(Model-Agnostic Meta-Learning)是元学习(Meta learning)最经典的几个算法之一,出自论文《Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks》。 原文地址:https://arxiv.org/abs/1703.03400
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
元学习(meta learning) 最新进展综述论文
专知会员服务
275+阅读 · 2020年5月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
56+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
13+阅读 · 2020年4月12日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Arxiv
3+阅读 · 2019年8月26日
Arxiv
7+阅读 · 2018年6月8日
VIP会员
相关VIP内容
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
元学习(meta learning) 最新进展综述论文
专知会员服务
275+阅读 · 2020年5月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
56+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员