We seek to remove foreground contaminants from 21cm intensity mapping observations. We demonstrate that a deep convolutional neural network (CNN) with a UNet architecture and three-dimensional convolutions, trained on simulated observations, can effectively separate frequency and spatial patterns of the cosmic neutral hydrogen (HI) signal from foregrounds in the presence of noise. Cleaned maps recover cosmological clustering statistics within 10% at all relevant angular scales and frequencies. This amounts to a reduction in prediction variance of over an order of magnitude on small angular scales ($\ell > 300$), and improved accuracy for small radial scales ($k_{\parallel} > 0.17\ \rm h\ Mpc^{-1})$ compared to standard Principal Component Analysis (PCA) methods. We estimate posterior confidence intervals for the network's prediction by training an ensemble of UNets. Our approach demonstrates the feasibility of analyzing 21cm intensity maps, as opposed to derived summary statistics, for upcoming radio experiments, as long as the simulated foreground model is sufficiently realistic. We provide the code used for this analysis on Github https://github.com/tlmakinen/deep21 as well as a browser-based tutorial for the experiment and UNet model via the accompanying http://bit.ly/deep21-colab Colab notebook.


翻译:我们试图从21厘米的强度绘图观测中去除前景污染物。 我们证明,一个带有UNet结构和三维变相的深卷动神经网络(CNN),经过模拟观测培训,能够有效地将宇宙中性氢信号的频率和空间模式从前景表面与噪音面前分离。清洁的地图在所有相关的角尺度和频率中将宇宙群集统计数据恢复到10%之内。这相当于在小角尺度上减少预测量在数量级上的差异($>300美元),并且提高小辐射尺度(k ⁇ paraillel} > 0.17\rm h\\ m\ Mpc ⁇ -1})的精确度,与标准的主元元元分析方法相比。我们通过培训一个共振式的UNets。我们的方法表明,对21厘米密度地图进行分析的可行性,而不是为即将到来的简要统计数据,只要模拟的地面模型模型是足够现实的。我们提供了用于本次主要构件分析的代码。我们为Gigh/comblibbial 提供了用于这项分析的Gib/ brobbma broma 和Unibly UN 提供了一个数据库。

0
下载
关闭预览

相关内容

在统计中,主成分分析(PCA)是一种通过最大化每个维度的方差来将较高维度空间中的数据投影到较低维度空间中的方法。给定二维,三维或更高维空间中的点集合,可以将“最佳拟合”线定义为最小化从点到线的平均平方距离的线。可以从垂直于第一条直线的方向类似地选择下一条最佳拟合线。重复此过程会产生一个正交的基础,其中数据的不同单个维度是不相关的。 这些基向量称为主成分。
专知会员服务
41+阅读 · 2020年12月18日
专知会员服务
168+阅读 · 2020年8月26日
《动手学深度学习》(Dive into Deep Learning)PyTorch实现
专知会员服务
115+阅读 · 2019年12月31日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Clustered Object Detection in Aerial Images
Arxiv
5+阅读 · 2019年8月27日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
VIP会员
相关资讯
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员