Semantic segmentation requires a lot of training data, which necessitates costly annotation. There have been many studies on unsupervised domain adaptation (UDA) from one domain to another, e.g., from computer graphics to real images. However, there is still a gap in accuracy between UDA and supervised training on native domain data. It is arguably attributable to class-level misalignment between the source and target domain data. To cope with this, we propose a method that applies adversarial training to align two feature distributions in the target domain. It uses a self-training framework to split the image into two regions (i.e., trusted and untrusted), which form two distributions to align in the feature space. We term this approach cross-region adaptation (CRA) to distinguish from the previous methods of aligning different domain distributions, which we call cross-domain adaptation (CDA). CRA can be applied after any CDA method. Experimental results show that this always improves the accuracy of the combined CDA method, having updated the state-of-the-art.


翻译:语义分解需要大量培训数据,这需要花费昂贵的注释说明。对于从一个领域到另一个领域未经监督的域适应(UDA)进行了许多研究,例如从计算机图形到真实图像。然而,UDA与本地域数据监督培训之间在准确性方面仍然存在差距。这可以说可归因于源和目标域数据之间的等级差错。为了应对这一点,我们提议了一种方法,运用对抗性培训将目标域的两个特性分布相匹配。它使用自培训框架将图像分为两个区域(即受信任和不受信任),形成两种分布,以在地物空间保持一致。我们用这个方法来区分跨区域适应(CRA)与先前调整不同域分布的方法,我们称之为跨域适应(CDA)。 CRA可以在任何CDA方法之后应用。实验结果表明,这总是提高CDA方法的准确性,并更新了该技术的现状。

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
89+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
24+阅读 · 2019年5月18日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
Arxiv
5+阅读 · 2018年10月23日
VIP会员
相关VIP内容
机器学习入门的经验与建议
专知会员服务
89+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
24+阅读 · 2019年5月18日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
Top
微信扫码咨询专知VIP会员