综述类文章

Kim S H , Nam E , Ha T I , et al. Robotic Machining: A Review of Recent Progress[J]. International Journal of Precision Engineering & Manufacturing, 2019(9–12).

工业机器人的使用在不同的制造领域中得到了广泛的应用。 因此,已经尝试使用机器人代替机械工具来进行机械加工。 然而,有限的加工精度一直是阻碍机器人加工系统采用的主要障碍。 最近,已经进行了大量研究以解决这个问题。 本文总结了机器人加工的最新进展,例如运动学标定和柔度误差补偿,以提高机器人加工的精度。 还讨论了用于改善机器人加工系统性能的辅助单元。

Jin Y , Hélène Chanal, Paccot F . Parallel Robots[J]. 2015.

Parallel robot (PR) is a mechanical system that utilized multiple computer-controlled limbs to support one common platform or end effector. Comparing to a serial robot, a PR generally has higher precision and dynamic performance and, therefore, can be applied to many applications. The PR research has attracted a lot of attention in the last three decades, but there are still many challenging issues to be solved before achieving PRs’ full potential. This chapter introduces the state-of-the-art PRs in the aspects of synthesis, design, analysis, and control. The future directions will also be discussed at the end.

并行机器人(PR)是一种机械系统,利用多个计算机控制的肢体来支撑一个通用平台或末端执行器。 与串行机器人相比,PR通常具有更高的精度和动态性能,因此可以应用于许多应用。 在过去的三十年中,PR研究引起了很多关注,但是在充分发挥PR的潜力之前,仍然有许多挑战性的问题需要解决。 本章从综合,设计,分析和控制方面介绍最新的PR。 将来的方向也将在最后讨论。

Ji W , Wang L . Industrial Robotic Machining: A Review[J]. International Journal of Advanced Manufacturing Technology, 2019, 103(1-4):1239-1255.

在过去的三十年中,由于机械加工的成本效益,高灵活性和多功能性,机器人加工引起了广泛的研究兴趣。 涵盖近30年来发表的有关机器人加工主题的文章; 本文旨在提供对机器人加工研究工作的最新评论,对发表研究工作的出版物进行严格的分析,并对该领域的未来发展方向有所了解。 根据其加工性能,将研究工作分为低材料去除率(MRR)和高材料去除率(MRR)两类,并分别回顾和强调研究主题。 然后,根据公开的年份和国家进行了一组统计分析。 对于适用的机器人加工,本文的末尾指出了未来的趋势和关键研究点。

LEI, G. U. O. Feedback and uncertainty: Some basic problems and results. Annual Reviews in Control, 2020.

本文将回顾一些基本结果,以了解有关反馈和不确定性的几个基本问​​题。 首先,我们将考虑线性随机系统的自适应控制,特别是通过结合最小二乘估计器和最小方差控制器设计的众所周知的自调整调节器的全局稳定性和最优性。 这种自然的,看似简单的情况实际上是自适应控制领域中长期存在的中心问题,其解决方案为理解更复杂的问题提供了宝贵的见解。 接下来,我们将讨论经典比例-积分-微分(PID)控制的理论基础,以了解其在控制实践中的广泛成功应用背后的原理,在控制实践中,几乎所有要控制的系统都是具有不确定性的非线性系统 闭环系统的整体稳定性和渐近最优定理,并为PID参数提供了一种具体的设计方法。 最后,在处理不确定的非线性系统时,我们将考虑关于反馈机制的最大能力和局限性的更基本的问题,其中将反馈机制定义为所有可能的反馈定律的类别。 本文还将讨论一些扩展和观点。

Shannon C E . A Mathematical Theory of Communication[J]. The Bell System Technical Journal, 1948, 27.

香农信息论原著论文 在本文的最后一部分中,我们考虑信号或消息或两者连续变化的情况,与迄今为止假定的离散性质相反。 通过将消息和信号的连续区域划分为大量但有限数量的小区域并在离散的基础上计算各种参数,可以通过离散过程的限制过程从某种程度上获得连续的情况。 随着区域尺寸的减小,通常将这些参数限制为连续情况的适当值。 但是,出现了一些新的影响,并且在一般结果针对特定案例的专业化方向上,重点也发生了总体变化。

Bo T , Xingwei Z , Han D . Mobile-robotic machining for large complex components: A review study[J]. 中国科学:技术科学, 2019, 062(008):1388-1400.

Even though the robotic machining has achieved great success in machining of small components, it lacks the competence to machine large complex components, such as wind turbine blade, train carriage, and aircraft wing. In order to cope with this issue,the mobile machining robot system, which consists of a robot arm integrated with a mobile platform, is proposed to achieve the large workspace and high dexterity, and thus has the potential to machine the large complex components. However, due to the limitation of motion accuracy and structural stiffness, the current mobile-robots are hard to satisfy the high precision requirement of machining tasks. In this paper, some historical mobile-robotic machining systems are reviewed firstly, followed by some key techniques related to structure optimization, dynamics of the machining process, localization, and control techniques, which are fundamental for the structural stiffness and motion accuracy of mobile-robots. Finally, the prospect of mobile-robotic machining and the open questions are addressed.

尽管机器人机械加工在加工小型零件方面取得了巨大的成功,但它缺乏加工大型复杂零件(例如风力涡轮机叶片,火车车厢和飞机机翼)的能力。 为了解决这个问题,提出了一种由机械臂与移动平台集成而成的移动式加工机器人系统,以实现较大的工作空间和较高的灵活性,从而具有加工大型复杂部件的潜力。 然而,由于运动精度和结构刚度的限制,当前的移动机器人难以满足加工任务的高精度要求。 本文首先回顾了一些历史悠久的移动机器人机械加工系统,然后介绍了一些与结构优化,加工过程动力学,定位和控制技术有关的关键技术,这些关键技术对于移动机器人的结构刚度和运动精度至关重要。 机器人。 最后,讨论了移动机器人加工的前景和未解决的问题。

Verl A, Valente A, Melkote S N, et al. Robots in machining[J]. Cirp Annals-manufacturing Technology, 2019, 68(2): 799-822.

Robotic machining centers offer diverse advantages: large operation reach with large reorientation capability, and a low cost, to name a few. Many challenges have slowed down the adoption or sometimes inhibited the use of robots for machining tasks. This paper deals with the current usage and status of robots in machining, as well as the necessary modelling and identification for enabling optimization, process planning and process control. Recent research addressing deburring, milling, incremental forming, polishing or thin wall machining is presented. We discuss various processes in which robots need to deal with significant process forces while fulfilling their machining task.

机器人加工中心具有多种优势:举个例子,它具有较大的操作范围,较大的重新定向能力和较低的成本。 许多挑战减慢了采用速度,有时甚至阻碍了使用机器人执行加工任务。 本文讨论了机械加工中机器人的当前使用和状态,以及实现优化,过程规划和过程控制所需的建模和识别。 提出了针对去毛刺,铣削,增量成型,抛光或薄壁加工的最新研究。 我们讨论了机器人在完成加工任务时需要处理大量过程力的各种过程。

Lei Y , Zengxi P , Donghong D , et al. A Review on Chatter in Robotic Machining Process Regarding Both Regenerative and Mode Coupling Mechanism[J]. Mechatronics, IEEE/ASME Transactions on, 2018, 23(5):2240-2251.

During last few decades, industrial robots have been widely used in various applications to develop flexible and efficient manufacturing process such as material handling and welding. However, as a high value-added application, few robotic machining systems have been installed mainly due to the limitation from chatter, which leads to poor product quality and low productivity. Although researchers have been continuously investigating the robotic machining chatter, there is still a lack of understanding due to the complexity of the issue. This paper provides a comprehensive review on chatter related issues during robotic machining tasks, including mechanisms, mitigation strategies and identification methods regarding both regenerative chatter and mode coupling chatter. Due to the low stiffness and couple structure of industrial robots, both regenerate and mode coupling chatter can occur at different cutting conditions. The difference between two chatter mechanism in robotic machining process are compared and a list of guidelines is provided to help distinguish these two types of chatter. Systemic analysis of the mechanisms of chatter identification and suppression is presented providing a research basis for future studies.

在过去的几十年中,工业机器人已广泛用于各种应用中,以开发灵活而有效的制造过程,例如材料处理和焊接。 但是,作为高附加值的应用,主要由于颤振的限制,很少安装机器人加工系统,这导致产品质量差和生产率低。 尽管研究人员一直在研究机器人加工的颤动,但是由于问题的复杂性,仍然缺乏了解。 本文对机器人加工任务中的颤振相关问题进行了全面的综述,包括有关再生颤振和模式耦合颤振的机制,缓解策略和识别方法。 由于工业机器人的低刚度和耦合结构,在不同的切削条件下都会发生再生耦合和振型耦合振颤。 比较了机械加工过程中两种颤振机制之间的区别,并提供了一系列指南来帮助区分这两种颤振。 颤振识别和抑制机制的系统分析被提出,为将来的研究提供了研究基础。

Smith C , Karayiannidis Y , Nalpantidis L , et al. Dual arm manipulation-A survey[J]. Robotics and Autonomous Systems, 2012, 60( 10):1340-1353.

Recent advances in both anthropomorphic robots and bimanual industrial manipulators had led to an increased interest in the specific problems pertaining to dual arm manipulation. For the future, we foresee robots performing human-like tasks in both domestic and industrial settings. It is therefore natural to study specifics of dual arm manipulation in humans and methods for using the resulting knowledge in robot control. The related scientific problems range from low-level control to high level task planning and execution. This review aims to summarize the current state of the art from the heterogenous range of fields that study the different aspects of these problems specifically in dual arm manipulation.

拟人化机器人和双手工业机械手的最新进展已引起人们对与双臂操作有关的特定问题的兴趣增加。 对于未来,我们预见机器人将在家庭和工业环境中执行类似人类的任务。 因此,自然而然地研究人的双臂操纵的细节以及在机器人控制中使用所得知识的方法。 相关的科学问题从低级控制到高级任务计划和执行。 这篇综述旨在从异类领域总结当前的技术水平,这些领域专门研究双臂操纵中这些问题的不同方面。

编辑于 2020-06-23 15:22